我们提出了一个模型预测控制(MPC),以避免自治药物和动态障碍之间的碰撞。避免碰撞的限制是通过在代表代理和障碍物的凸组之间执行正距离的,并使用Lagrange二重性进行了谨慎地对其进行重新校正。这种方法即使对于多面体来说也可以平稳避免碰撞限制,否则需要混合组合或非平滑限制。我们考虑了不确定障碍位置的三种广泛使用的描述:1)具有多重支持的任意分布,2)高斯分布和3)任意分布,并以已知的前两个矩。对于每种情况,我们都会获得避免碰撞限制的确定性重新制定。拟议的MPC公式优化了反馈政策,以减少满足碰撞避免限制的保守主义。使用卡拉中交通交叉点的模拟对所提出的方法进行了验证。
translated by 谷歌翻译
由于围绕机器人的未来轨迹的不确定性,安全导航是多机器人系统中的一个基本挑战,这些轨迹彼此相互障碍。在这项工作中,我们提出了一种原则性的数据驱动方法,每个机器人都反复解决一个有限的地平线优化问题,但要避免碰撞限制,后者被表达为代理商和代理之间距离的分布稳健的条件价值风险(CVAR)多面体障碍物几何形状。具体而言,需要CVAR约束来保留所有与从执行过程中收集的预测误差样本构成的经验分布的所有分布。该方法的一般性使我们能够在分布式和去中心化设置中普遍强加的假设下出现的预测错误鲁棒性。我们通过利用凸面和Minmax二元性结果来得出这类约束的有限尺寸近似值。在凉亭平台中实现的多人导航设置中说明了所提出的方法的有效性。
translated by 谷歌翻译
机器人等系统的安全操作要求它们计划和执行受安全约束的轨迹。当这些系统受到动态的不确定性的影响时,确保不违反限制是具有挑战性的。本文提出了基于受约束差分动态规划(DDP)的附加不确定性和非线性安全约束的安全轨迹,安全轨迹优化和控制方法。在其运动中的机器人的安全性被制定为机会限制了用户所选择的约束满足的概率。通过约束收紧将机会约束转换为DDP制剂中的确定性。为了避免在约束期间的过保守,从受约束的DDP导出的反馈策略的线性控制增益用于预测中的闭环不确定性传播的近似。所提出的算法在三种不同的机器人动态上进行了经验评估,模拟中具有高达12度的自由度。使用物理硬件实现对方法的计算可行性和适用性进行了说明。
translated by 谷歌翻译
Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
translated by 谷歌翻译
我们认为具有非正度运动学的代理/机器人的问题避免了许多动态障碍。机器人和障碍物的状态和速度噪声以及机器人的控制噪声被建模为非参数分布,因为噪声模型的高斯假设被侵犯在现实世界中。在这些假设下,我们制定了一种强大的MPC,其以使机器人对准目标状态的方式有效地样本机器人控制,同时避免这种非参数噪声的胁迫下的障碍物。特别地,MPC包括分布匹配成本,其有效地将当前碰撞锥的分布对准到某个所需的分布,其样本是无碰撞的。这种成本在希尔伯特空间中作为距离功能构成,其最小化通常导致碰撞锥样品变得无碰撞。我们通过线性化原始非参数状态和障碍物分布的高斯近似来对比较和显示有形性能增益。我们还通过对非参数噪声的高斯近似构成的方法来表现出卓越的性能,而不会对进一步的线性提出进行这种近似的非参数噪声的高斯近似。性能增益在轨迹长度和控制成本方面都显示,其遵守所提出的方法的功效。据我们所知,这是在存在非参数状态,速度和致动器噪声模型存在下的运动障碍的第一次呈现。
translated by 谷歌翻译
延迟在迅速变化的环境中运行的自主系统的危害安全性,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地和统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力学; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用的优点,我们证明我们的方法适合自动驾驶和自动赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护器。
translated by 谷歌翻译
本文使用总变化距离歧义集研究了分布强大的模型预测控制(MPC)的问题。对于具有加性干扰的离散时间线性系统,我们为MPC优化问题提供有条件的价值重新印度,该重新质量在预期的成本和机会限制下在分配上具有稳定性。分布稳健的机会约束被过度评估,以减轻计算负担的更简单,收紧的机会约束。数值实验支持我们的概率保证和计算效率的结果。
translated by 谷歌翻译
This paper proposes Distributed Model Predictive Covariance Steering (DMPCS), a novel method for safe multi-robot control under uncertainty. The scope of our approach is to blend covariance steering theory, distributed optimization and model predictive control (MPC) into a single methodology that is safe, scalable and decentralized. Initially, we pose a problem formulation that uses the Wasserstein distance to steer the state distributions of a multi-robot team to desired targets, and probabilistic constraints to ensure safety. We then transform this problem into a finite-dimensional optimization one by utilizing a disturbance feedback policy parametrization for covariance steering and a tractable approximation of the safety constraints. To solve the latter problem, we derive a decentralized consensus-based algorithm using the Alternating Direction Method of Multipliers (ADMM). This method is then extended to a receding horizon form, which yields the proposed DMPCS algorithm. Simulation experiments on large-scale problems with up to hundreds of robots successfully demonstrate the effectiveness and scalability of DMPCS. Its superior capability in achieving safety is also highlighted through a comparison against a standard stochastic MPC approach. A video with all simulation experiments is available in https://youtu.be/Hks-0BRozxA.
translated by 谷歌翻译
本文提出了一种新的规划和控制策略,用于赛车场景中的多辆车竞争。所提出的赛车策略在两种模式之间切换。当没有周围的车辆时,使用基于学习的模型预测控制(MPC)轨迹策划器用于保证自助车辆更好地实现了更好的搭接定时。当EGO车辆与其他围绕车辆竞争以超车时,基于优化的策划器通过并行计算产生多个动态可行的轨迹。每个轨迹在MPC配方下进行优化,其具有不同的同型贝塞尔曲线参考路径,横向于周围的车辆之间。选择这些不同的同型轨迹之间的时间最佳轨迹,并使用具有障碍物避免约束的低级MPC控制器来保证系统的安全性能。所提出的算法具有能够生成无碰撞轨迹并跟踪它们,同时提高杠杆定时性能,稳定的低计算复杂性,优于汽车赛车环境的时序和性能中的现有方法。为了展示我们的赛车策略的表现,我们在轨道上模拟了多个随机生成的移动车辆,并测试自我车辆的超越机动。
translated by 谷歌翻译
对于多面体之间的障碍物躲避开发的控制器是在狭小的空间导航一个具有挑战性的和必要的问题。传统的方法只能制定的避障问题,因为离线优化问题。为了应对这些挑战,我们提出用非光滑控制屏障功能多面体之间的避障,它可以实时与基于QP的优化问题来解决基于二元安全关键最优控制。一种双优化问题被引入到表示被施加到构造控制屏障功能多面体和用于双形式的拉格朗日函数之间的最小距离。我们验证了避开障碍物与在走廊环境受控的L形(沙发形)机器人建议的双配制剂。据我们所知,这是第一次,实时紧避障与非保守的演习是在移动沙发(钢琴)与非线性动力学问题来实现的。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
In order for automated mobile vehicles to navigate in the real world with minimal collision risks, it is necessary for their planning algorithms to consider uncertainties from measurements and environmental disturbances. In this paper, we consider analytical solutions for a conservative approximation of the mutual probability of collision between two robotic vehicles in the presence of such uncertainties. Therein, we present two methods, which we call unitary scaling and principal axes rotation, for decoupling the bivariate integral required for efficient approximation of the probability of collision between two vehicles including orientation effects. We compare the conservatism of these methods analytically and numerically. By closing a control loop through a model predictive guidance scheme, we observe through Monte-Carlo simulations that directly implementing collision avoidance constraints from the conservative approximations remains infeasible for real-time planning. We then propose and implement a convexification approach based on the tightened collision constraints that significantly improves the computational efficiency and robustness of the predictive guidance scheme.
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
我们为非全面移动机器人设计了MPC方法,并在分析上表明,随着时间的变化,线性化的系统可以在跟踪任务中的来源周围产生渐近稳定性。为了避免障碍物,我们提出了速度空间中的约束,该约束根据当前状态明确耦合两个控件输入。
translated by 谷歌翻译
Dynamic game arises as a powerful paradigm for multi-robot planning, for which safety constraint satisfaction is crucial. Constrained stochastic games are of particular interest, as real-world robots need to operate and satisfy constraints under uncertainty. Existing methods for solving stochastic games handle chance constraints using exponential penalties with hand-tuned weights. However, finding a suitable penalty weight is nontrivial and requires trial and error. In this paper, we propose the chance-constrained iterative linear-quadratic stochastic games (CCILQGames) algorithm. CCILQGames solves chance-constrained stochastic games using the augmented Lagrangian method. We evaluate our algorithm in three autonomous driving scenarios, including merge, intersection, and roundabout. Experimental results and Monte Carlo tests show that CCILQGames can generate safe and interactive strategies in stochastic environments.
translated by 谷歌翻译
This paper proposes an algorithm for motion planning among dynamic agents using adaptive conformal prediction. We consider a deterministic control system and use trajectory predictors to predict the dynamic agents' future motion, which is assumed to follow an unknown distribution. We then leverage ideas from adaptive conformal prediction to dynamically quantify prediction uncertainty from an online data stream. Particularly, we provide an online algorithm uses delayed agent observations to obtain uncertainty sets for multistep-ahead predictions with probabilistic coverage. These uncertainty sets are used within a model predictive controller to safely navigate among dynamic agents. While most existing data-driven prediction approached quantify prediction uncertainty heuristically, we quantify the true prediction uncertainty in a distribution-free, adaptive manner that even allows to capture changes in prediction quality and the agents' motion. We empirically evaluate of our algorithm on a simulation case studies where a drone avoids a flying frisbee.
translated by 谷歌翻译
我们提出了一种基于差分动态编程框架的算法,以处理轨迹优化问题,其中地平线在线确定而不是修复先验。该算法表现出直线,二次,时间不变问题的精确一步收敛,并且足够快,以便实时非线性模型预测控制。我们在离散时间案例中显示了非线性算法的派生,并将该算法应用于各种非线性问题。最后,我们展示了与标准MPC控制器相比的最佳地平线模型预测控制方案在平面机器人的障碍避免问题上的功效。
translated by 谷歌翻译
We present an approach for safe trajectory planning, where a strategic task related to autonomous racing is learned sample-efficient within a simulation environment. A high-level policy, represented as a neural network, outputs a reward specification that is used within the cost function of a parametric nonlinear model predictive controller (NMPC). By including constraints and vehicle kinematics in the NLP, we are able to guarantee safe and feasible trajectories related to the used model. Compared to classical reinforcement learning (RL), our approach restricts the exploration to safe trajectories, starts with a good prior performance and yields full trajectories that can be passed to a tracking lowest-level controller. We do not address the lowest-level controller in this work and assume perfect tracking of feasible trajectories. We show the superior performance of our algorithm on simulated racing tasks that include high-level decision making. The vehicle learns to efficiently overtake slower vehicles and to avoid getting overtaken by blocking faster vehicles.
translated by 谷歌翻译
在本文中,我们为自主机器人提供了一种新型的模型预测控制方法,受到任意形式的不确定性。拟议的风险感知模型预测路径积分(RA-MPPI)控制利用条件价值(CVAR)度量来为安全关键的机器人应用生成最佳控制动作。与大多数现有的随机MPC和CVAR优化方法不同,这些方法将原始动力学线性化并将控制任务制定为凸面程序,而拟议的方法直接使用原始动力学,而无需限制成本函数或噪声的形式。我们将新颖的RA-MPPI控制器应用于自动驾驶汽车,以在混乱的环境中进行积极的驾驶操作。我们的仿真和实验表明,与基线MPPI控制器相比,提出的RA-MPPI控制器可以达到大约相同的圈时间,而碰撞的碰撞明显少得多。所提出的控制器以高达80Hz的更新频率执行在线计算,利用现代图形处理单元(GPU)来进行多线程轨迹以及CVAR值的生成。
translated by 谷歌翻译
随着使用复杂非线性优化但计算资源有限的经济实惠的自动驾驶车辆,计算时间成为关注问题。其他因素,如执行器动力学和执行器命令处理成本也不可避免地导致延迟。在高速场景中,这些延迟对于车辆的安全至关重要。最近的作品将这些延迟单独考虑,但没有在自动驾驶的背景下统一它们。此外,最近的作品不恰当地考虑计算时间作为恒定或大的上限,这使得控制较少响应或过保守。要处理所有这些延迟,我们通过1)统一的框架,使用鲁棒管模型预测控制,3)使用新型Adaptive Kalman滤波器,无需假定已知的过程模型和噪声协方差,这使得控制器安全尽量减少保守性。在一次性的情况下,我们的方法可以作为独立控制器;在其他手上,我们的方法为高级控制器提供了一个安全防护装置,这不拖延。这可以用于在部署在简单环境中培训的黑匣子学习的控制器时补偿SIM-TO-REAL间隙,而不考虑实际车辆系统的延迟。
translated by 谷歌翻译