对于视频标题,“预培训和微调”已成为事实上的范式,其中想象成预训练(InP)通常用于帮助编码视频内容,并且从头开始进行任务导向的网络应对标题一代。将InP与最近提出的剪辑(对比语言图像预培训)进行比较,研究了INP的潜在缺陷,用于视频标题,并探索产生准确描述的关键。具体而言,我们对INP与剪辑的实证研究表明,INP使视频标题模型棘手捕获属性的语义和对无关背景信息的敏感。相比之下,剪辑在标题质量中的显着提升突出了属性感知表示学习的重要性。因此,我们被激励引入双属性预测,需要一个辅助任务,需要视频字幕模型来学习视频内容和属性之间的对应关系以及属性之间的共同发生关系。基准数据集的广泛实验表明,我们的方法能够更好地学习属性感知的表示,这对具有不同架构和解码算法的模型带来了一致的改进。
translated by 谷歌翻译
视频字幕定位目标将复杂的视觉内容解释为文本说明,这要求模型充分了解包括对象及其交互的视频场景。流行的方法采用现成的对象检测网络来提供对象建议,并使用注意机制来建模对象之间的关系。他们通常会错过一些预验证模型的不确定语义概念,并且无法识别对象之间的确切谓词关系。在本文中,我们研究了为给定视频生成文本描述的开放研究任务,并提出了带有元概念的跨模式图(CMG)。具体而言,为了涵盖视频字幕中有用的语义概念,我们弱地学习了文本描述的相应视觉区域,其中相关的视觉区域和文本单词被命名为跨模式元概念。我们通过学习的跨模式元概念动态地构建元概念图。我们还构建了整体视频级别和本地框架级视频图,并具有预测的谓词,以建模视频序列结构。我们通过广泛的实验来验证我们提出的技术的功效,并在两个公共数据集上实现最新结果。
translated by 谷歌翻译
密集的视频字幕旨在为未修剪视频中的一系列事件生成相应的文本描述,这些事件可以分为两个子任务,即事件检测和事件字幕。与以前分别解决这两个子任务的作品不同,最近的作品着重于增强两个子任务之间的任务间关联。但是,由于其特定于任务的解决方案的巨大差异,设计用于事件检测和字幕的任务间相互作用并不是微不足道的。此外,以前的事件检测方法通常会忽略事件之间的时间依赖性,从而导致事件冗余或不一致问题。在本文中,我们将事件检测定义为序列生成任务,并提出一个统一的预训练和微调框架,以自然增强事件检测和字幕之间的任务间关联。由于该模型将每个事件预测为以前的事件为上下文,因此事件之间的相互依赖性被充分利用,因此我们的模型可以检测到视频中更多样化和一致的事件。 ActivityNet数据集上的实验表明,我们的模型优于最新方法,并且在对大型视频文本数据进行预训练时,可以进一步提高。代码可在\ url {https://github.com/qiqang/uedvc}上获得。
translated by 谷歌翻译
近年来在开发更好的图像标题模型方面取得了巨大进展,但其中大多数依赖于单独的对象探测器来提取区域特征。最近的视觉语言研究通过利用网格表示来实现更灵活的模型训练和更快推理速度的速度来转向探测器趋势。但是,这种发展主要专注于图像理解任务,并且对标题生成任务的研究仍然较少。在本文中,我们涉及一种更好的无需探测器图像标题模型,并提出了一种基于纯视觉变压器的图像标题模型,称为VITCAP,其中使用了网格表示而不提取区域特征。为了提高性能,我们介绍了一种新颖的概念令牌网络(CTN)来预测语义概念,然后将它们纳入端到端的标题。特别地,CTN是基于视觉变换器构建的,并且旨在通过分类任务预测概念令牌,其中包含丰富的语义信息极大地利益标题任务。与以前的探测器的模型相比,Vitcap大大简化了架构,同时在各种具有挑战性的图像标题数据集上实现了竞争性能。特别是,Vitcap分别达到138.1苹果酒分数,即在Nocaps上的Coco-Caption Karpatal-Splity,93.8和108.6苹果酒分数和Google-CC标题数据集上分别达到138.1苹果酒分数。
translated by 谷歌翻译
图像字幕模型通常是根据人体注释的地面真实字幕训练的,该字幕可能会产生准确但通用的字幕。为了提高字幕模型的独特性,我们首先提出了一系列使用大规模视觉语言预训练模型剪辑来评估标题的独特性。然后,我们提出了一种简单有效的训练策略,该策略通过在相似图像组中进行比较来训练模型。我们对各种现有模型进行了广泛的实验,以证明我们的策略的广泛适用性以及基于公制的结果与人类评估的一致性。通过将最佳模型的性能与现有的最新模型进行比较,我们声称我们的模型实现了针对独特性目标的新最先进的。
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
视频标题旨在根据内容生成自然语言描述,其中表示学习起到至关重要的作用。现有方法主要通过对地理文本的生成标题的字词比较来在监督学习框架内开发,而不会完全利用语言语义。在这项工作中,我们提出了一个分层模块化网络,在生成字幕之前从三个级别桥接视频表示和语言语义。特别是,层次结构由以下组成:(i)实体级别,其突出显示最有可能在字幕中提及的对象。 (ii)谓词级别,它学习在突出显示的对象上调节的行动,并由标题中的谓词进行监督。 (iii)句子级别,了解全局语义表示,并受到整个标题的监督。每个级别由一个模块实现。广泛的实验结果表明,该方法对两个广泛使用的基准测试的最先进模型有利地表现出:MSVD 104.0%和苹果酒评分中的MSR-VTT 51.5%。
translated by 谷歌翻译
Most existing text-video retrieval methods focus on cross-modal matching between the visual content of offline videos and textual query sentences. However, in real scenarios, online videos are frequently accompanied by relevant text information such as titles, tags, and even subtitles, which can be utilized to match textual queries. This inspires us to generate associated captions from offline videos to help with existing text-video retrieval methods. To do so, we propose to use the zero-shot video captioner with knowledge of pre-trained web-scale models (e.g., CLIP and GPT-2) to generate captions for offline videos without any training. Given the captions, one question naturally arises: what can auxiliary captions do for text-video retrieval? In this paper, we present a novel framework Cap4Video, which makes use of captions from three aspects: i) Input data: The video and captions can form new video-caption pairs as data augmentation for training. ii) Feature interaction: We perform feature interaction between video and caption to yield enhanced video representations. iii) Output score: The Query-Caption matching branch can be complementary to the original Query-Video matching branch for text-video retrieval. We conduct thorough ablation studies to demonstrate the effectiveness of our method. Without any post-processing, our Cap4Video achieves state-of-the-art performance on MSR-VTT (51.4%), VATEX (66.6%), MSVD (51.8%), and DiDeMo (52.0%).
translated by 谷歌翻译
图像标题是视觉语言理解的基本任务,其中模型将文本信息标题预测到给定输入图像。在本文中,我们提出了一种解决此任务的简单方法。我们使用剪辑编码作为标题的前缀,通过采用简单的映射网络,然后微调语言模型以生成图像标题。最近提出的剪辑模型包含丰富的语义特征,这些功能培训了文本背景,使其最适合视觉语言感知。我们的关键思想与预先接受训练的语言模型(GPT2)一起,我们获得了广泛了解视觉和文本数据。因此,我们的方法只需要相当快速的培训来产生称职的标题模型。如果没有额外的注释或预训练,它有效地为大规模和多样化的数据集生成有意义的标题。令人惊讶的是,即使仅在训练映射网络时,我们的方法也很好地运行良好,而剪辑和语言模型仍然冻结,则允许较轻的培训参数较轻的架构。通过定量评估,我们展示了我们的模型在充满挑战的概念标题和Nocaps数据集上实现了最先进的方法的可比结果,而它更简单,更快,更轻。我们的代码在https://github.com/rmokady/clip_prefix_caption中提供。
translated by 谷歌翻译
预先训练的图像文本模型(如剪辑)已经证明了从大规模的Web收集的图像文本数据中学到的视觉表示的强大力量。鉴于学习良好的视觉特征,一些现有的作品将图像表示转移到视频域并取得良好的结果。但是,如何利用图像语言预训练的模型(例如,剪辑)进行视频培训(后培训)仍在探索。在本文中,我们研究了两个问题:1)阻碍后期剪辑的因素是什么因素,以进一步提高视频语言任务的性能? 2)如何减轻这些因素的影响?通过一系列比较实验和分析,我们发现语言源之间的数据量表和域间隙具有很大的影响。由这些动机,我们提出了一种配备了视频代理机制的Omnisource跨模式学习方法,即剪辑,即剪辑VIP。广泛的结果表明,我们的方法可以提高视频检索的剪辑的性能。我们的模型还可以在包括MSR-VTT,DIDEMO,LSMDC和ActivityNet在内的各种数据集上实现SOTA结果。我们在https://github.com/microsoft/xpretrain/tree/main/main/main/clip-vip上发布了代码和预训练的剪辑模型。
translated by 谷歌翻译
The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework CLIPBERT that enables affordable endto-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that CLIP-BERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second genericdomain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available. 1 * Equal contribution.
translated by 谷歌翻译
本文介绍了Omnivl,这是一种新的基础模型,旨在使用一种通用体系结构来支持图像语言和视频语言任务。它为图像和视频输入采用了统一的基于变压器的视觉编码器,因此可以执行联合图像语言和视频语言预处理。我们首次证明了这样的范式受益于图像和视频任务,而不是传统的单向传输(例如,使用图像语言来帮助视频语言)。为此,我们提出了对图像语言和视频语言的脱钩关节预处理,以有效地将视觉模型分解为空间和时间维度,并在图像和视频任务上获得性能提升。此外,我们引入了一种新颖的统一视觉对比度(UNIVLC)损失,以利用图像文本,视频文本,图像标签(例如,图像分类),视频标签(例如,视频动作识别)在一起受到监督和吵闹的监督预处理数据都尽可能多地利用。无需额外的任务适配器,Omnivl可以同时支持仅视觉任务(例如,图像分类,视频操作识别),跨模式对齐任务(例如,图像/视频 - 文本检索)和多模式理解和生成任务(例如,图像/视频问答,字幕)。我们在各种下游任务上评估Omnivl,并以相似的模型大小和数据量表获得最新的或竞争结果。
translated by 谷歌翻译
现代视频文本检索框架基本上由三个部分组成:视频编码器,文本编码器和相似性。随着Visual和Textual表示学习的成功,在视频文本检索领域也采用了基于变压器的编码器和融合方法。在本报告中,我们呈现Clip2TV,旨在探索关键元素在基于变压器的方法中。为实现这一目标,我们首先重新审视一些对多模态学习的工作,然后将一些技术介绍到视频文本检索中,最后通过不同配置的大量实验进行评估。值得注意的是,Clip2TV在MSR-VTT数据集上实现了52.9 @ R1,优先表现出先前的SOTA结果为4.1%。
translated by 谷歌翻译
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
translated by 谷歌翻译
描述使用自然语言的图像被广泛称为图像标题,这是由于计算机视觉和自然语言生成技术的发展而达成了一致的进展。虽然传统的标题模型基于流行度量的高精度,即BLEU,苹果酒和香料,探索了标题与其他类似图像中的标题的能力。为了产生独特的标题,一些先驱采用对比学习或重新加权地面真理标题,其侧重于一个输入图像。然而,忽略了类似图像组中对象之间的关系(例如,相同专辑中的项目或属性或细粒度事件中的物品)。在本文中,我们使用基于组的独特标题模型(Gdiscap)来提高图像标题的独特性,其将每个图像与一个类似的组中的其他图像进行比较,并突出显示每个图像的唯一性。特别是,我们提出了一种基于组的内存注意力(GMA)模块,其存储在图像组中是唯一的对象特征(即,与其他图像中的对象的低相似性)。生成字幕时突出显示这些唯一的对象功能,从而产生更有独特的标题。此外,选择地面标题中的独特单词来监督语言解码器和GMA。最后,我们提出了一种新的评估度量,独特的单词率(Diswordrate)来测量标题的独特性。定量结果表明,该方法显着提高了几种基线模型的独特性,并实现了精度和独特性的最先进的性能。用户学习的结果与定量评估一致,并证明了新的公制Diswordrate的合理性。
translated by 谷歌翻译
在过去的几年中,训练前模型的出现将单峰领域(例如计算机视觉(CV)和自然语言处理(NLP))带到了一个新时代。实质性的作品表明它们对下游大学任务有益,并避免从头开始训练新的模型。那么,此类预训练的模型可以应用于多模式任务吗?研究人员探索了这个问题并取得了重大进展。本文调查了视觉预训练(VLP)的最新进展和新的前沿,包括图像文本和视频文本预训练。为了使读者更好地掌握VLP,我们首先从五个方面回顾了其最新进展:功能提取,模型体系结构,培训预训练目标,预训练数据集和下游任务。然后,我们详细概述了特定的VLP模型。最后,我们讨论了VLP中的新边界。据我们所知,这是对VLP的首次调查。我们希望这项调查能够阐明VLP领域的未来研究。
translated by 谷歌翻译
最近,通过引入大规模的数据集和强大的变压器网络,视频预培训表明尤其是检索的巨大成功。然而,现有的视频语言变压器模型没有明确细粒度的语义对齐。在这项工作中,我们呈现了对象感知的变换器,以对象为中心的方法,该对象方法扩展了视频语言变压器来合并对象表示。关键的想法是利用边界框和对象标签来指导培训过程。我们在四个广泛使用的基准测试中评估了我们的三个标准子任务的模型。我们还提供了深入的分析和详细消融关于所提出的方法。我们在考虑的所有任务和数据集中表现出清晰的性能,展示将对象表示的模型中的型号集成到视频架构中。代码将以\ URL {https://github.com/fingerrec/oa -transformer}释放。
translated by 谷歌翻译
视频语言(VIDL)建模的巨大挑战在于从图像/视频理解模型和下游Vidl数据中提取的固定视频表示之间的断开。最近的研究试图通过端到端培训来减轻这种断开连接。为了使其进行计算可行,先前的作品倾向于“想象”视频输入,即,将一些稀疏的采样帧馈送到2D CNN中,然后是简单的均值汇集或连接以获得整体视频表示。虽然实现了有希望的结果,但这种简单的方法可能会失去对于执行下游VIDL任务至关重要的时间信息。在这项工作中,我们呈现紫罗兰色,全新的视频语言变压器,采用视频变压器,明确地模拟视频输入的时间动态。此外,与以前的研究不同,发现视频输入上的预训练任务(例如,屏蔽帧建模)不是非常有效的,我们设计了一个新的预训练任务,屏蔽了视觉令牌建模(MVM),以获得更好的视频建模。具体地,原始视频帧修补程序将“令牌化”转换为离散的视觉令牌,目标是基于蒙面的贴片恢复原始的视觉令牌。综合分析展示了通过视频变压器和MVM显式时间建模的有效性。因此,紫罗兰在5个视频问题的回答任务和4个文本到视频检索任务中实现了新的最先进的性能。
translated by 谷歌翻译
The availability of large-scale image captioning and visual question answering datasets has contributed significantly to recent successes in vision-and-language pretraining. However, these datasets are often collected with overrestrictive requirements inherited from their original target tasks (e.g., image caption generation), which limit the resulting dataset scale and diversity. We take a step further in pushing the limits of vision-and-language pretraining data by relaxing the data collection pipeline used in Conceptual Captions 3M (CC3M) [70] and introduce the Conceptual 12M (CC12M), a dataset with 12 million image-text pairs specifically meant to be used for visionand-language pre-training. We perform an analysis of this dataset and benchmark its effectiveness against CC3M on multiple downstream tasks with an emphasis on long-tail visual recognition. Our results clearly illustrate the benefit of scaling up pre-training data for vision-and-language tasks, as indicated by the new state-of-the-art results on both the nocaps and Conceptual Captions benchmarks. 1
translated by 谷歌翻译
视频标题的当前度量主要基于参考和候选字幕之间的文本级别比较。然而,它们具有一些不可能的缺点,例如,它们不能在没有参考的情况下处理视频,并且由于视频到文本的一对多性质和忽视视觉相关性的一对多性质,它们可能导致偏见的评估。从人类评估者的观点来看,高质量的标题应与提供的视频一致,但不一定类似于文字或语义中的参考。灵感来自人类评估,我们提出了Emscore(基于匹配的分数),是视频字幕的一种新颖的无参考度量,其直接测量视频和候选字幕之间的相似性。受益于最近的大规模预训练模型的发展,我们利用了一个良好的预先训练的视觉语言模型来提取用于计算Emscore的视觉和语言嵌入。具体地,Emscore将粗粒(视频和标题)和细粒度(帧和单词)水平的匹配分数组合,这将考虑到视频的整体理解和详细特征。此外,考虑到潜在的信息增益,Emscore可以灵活地扩展到人类标记的参考可用的条件。最后但并非最不重要的是,我们收集Vatex-eval和ActivityNet-Foil数据集以系统地评估现有的度量标准。 Vatex-emp实验表明,Emscore具有更高的人类相关性和较低的参考依赖性。 ActivityNet-Foil实验验证Emscore可以有效地识别“幻觉”标题。将释放数据集以促进视频标题度量的开发。代码可在:https://github.com/shiyaya/emcore。
translated by 谷歌翻译