Non-invasive brain-computer interface technology has been developed for detecting human mental states with high performances. Detection of the pilots' mental states is particularly critical because their abnormal mental states could cause catastrophic accidents. In this study, we presented the feasibility of classifying distraction levels (namely, normal state, low distraction, and high distraction) by applying the deep learning method. To the best of our knowledge, this study is the first attempt to classify distraction levels under a flight environment. We proposed a model for classifying distraction levels. A total of ten pilots conducted the experiment in a simulated flight environment. The grand-average accuracy was 0.8437 for classifying distraction levels across all subjects. Hence, we believe that it will contribute significantly to autonomous driving or flight based on artificial intelligence technology in the future.
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
近年来,神经科学家一直对脑部计算机界面(BCI)设备的开发感兴趣。患有运动障碍的患者可能会受益于BCIS作为通讯手段和恢复运动功能。脑电图(EEG)是评估神经元活性的最常用之一。在许多计算机视觉应用中,深度神经网络(DNN)都具有显着优势。为了最终使用DNN,我们在这里提出了一个浅神经网络,该网络主要使用两个卷积神经网络(CNN)层,其参数相对较少,并且快速从脑电图中学习光谱时期特征。我们将该模型与其他三个神经网络模型进行了比较,其深度不同于精神算术任务,该模型使用了针对患有运动障碍的患者和视觉功能下降的患者进行的眼神闭合状态。实验结果表明,浅CNN模型的表现优于所有其他模型,并达到了90.68%的最高分类精度。处理跨主题分类问题也更加健壮:准确性的标准偏差仅为3%,而不是传统方法的15.6%。
translated by 谷歌翻译
The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems.
translated by 谷歌翻译
通过脑电图信号的情绪分类取得了许多进步。但是,诸如缺乏数据和学习重要特征和模式之类的问题始终是具有在计算和预测准确性方面改进的领域。这项工作分析了基线机器学习分类器在DEAP数据集上的性能以及一种表格学习方法,该方法提供了最新的可比结果,从而利用了性能提升,这是由于其深度学习架构而无需部署重型神经网络。
translated by 谷歌翻译
基于电动机图像(MI)的脑电脑界面(BCIS)允许通过解码神经生理现象来控制几种应用,这些现象通常通过使用非侵入性技术被脑电图(EEG)记录。尽管在基于MI的BCI的进展方面很大,但脑电图有特定于受试者和各种变化随时间。这些问题指出了提高分类绩效的重大挑战,特别是在独立的方式。为了克服这些挑战,我们提出了Min2Net,这是一个新的端到端多任务学习来解决这项任务。我们将深度度量学习集成到多任务AutoEncoder中,以从脑电图中学习紧凑且识别的潜在表示,并同时执行分类。这种方法降低了预处理的复杂性,导致EEG分类的显着性能改善。实验结果以本语独立的方式表明,MIN2Net优于最先进的技术,在SMR-BCI和OpenBMI数据集中分别实现了6.72%的F1分数提高,以及2.23%。我们证明MIN2NET在潜在代表中提高了歧视信息。本研究表明使用此模型的可能性和实用性为新用户开发基于MI的BCI应用,而无需校准。
translated by 谷歌翻译
本文介绍了机器学习推动的各种脑电图应用程序和当前的脑电图市场生态系统。使用脑电图越来越多的开放医疗和健康数据集鼓励数据驱动的研究,并有望通过知识发现和机器学习数据科学算法开发来改善患者护理的神经病学。这项工作导致各种脑电图发展,目前构成了新的脑电图市场。本文试图对脑电图市场进行全面的调查,并涵盖脑电图的六个重要应用,包括诊断/筛查,药物开发,神经营销,日常健康,元元和年龄/残疾援助。这项调查的重点是研究领域与商业市场之间的比较和对比。我们的调查指出了脑电图的当前局限性,并指示了上面列出的每个脑电图应用程序的研究和商机的未来方向。根据我们的调查,对基于机器学习的脑电图应用程序的更多研究将导致与脑电图相关的更强大的市场。越来越多的公司将使用研究技术并将其应用于现实生活中。随着与EEG相关的市场的增长,与EEG相关的设备将收集更多的脑电图数据,并且将有更多的EEG数据供研究人员在他们的研究中使用,以作为一个良性周期。我们的市场分析表明,在上面列出的六个应用程序中使用脑电图数据和机器学习有关的研究指向脑电图生态系统和机器学习世界的增长和发展的明确趋势。
translated by 谷歌翻译
工作记忆(WM)表示在脑海中存储的信息,是人类认知领域的一个基本研究主题。可以监测大脑的电活动的脑电图(EEG)已被广泛用于测量WM的水平。但是,关键的挑战之一是个体差异可能会导致无效的结果,尤其是当既定模型符合陌生主题时。在这项工作中,我们提出了一个具有空间注意力(CS-DASA)的跨主题深层适应模型,以概括跨科目的工作负载分类。首先,我们将EEG时间序列转换为包含空间,光谱和时间信息的多帧EEG图像。首先,CS-DASA中的主题共享模块从源和目标主题中接收多帧的EEG图像数据,并学习了共同的特征表示。然后,在特定于主题的模块中,实现了最大平均差异,以测量重现的内核希尔伯特空间中的域分布差异,这可以为域适应增加有效的罚款损失。此外,采用主题对象的空间注意机制专注于目标图像数据的判别空间特征。在包含13个受试者的公共WM EEG数据集上进行的实验表明,所提出的模型能够达到比现有最新方法更好的性能。
translated by 谷歌翻译
本文提出了一种基于离散小波变换(DWT)和机器学习分类器的癫痫检测方法。这里DWT已被用于特征提取,因为它提供了更好地分解了不同频带中的信号。首先,DWT已被应用于EEG信号以提取细节和近似系数或不同的子带。在提取系数之后,主成分分析(PCA)已经应用于不同的子带,然后使用特征级融合技术来提取低维特征空间中的重要特征。三个分类器即:支持向量机(SVM)分类器,K-Cirelte-邻(KNN)分类器和NAIVE Bayes(NB)分类器已用于分类EEG信号的工作中。该方法在Bonn数据库上进行了测试,并为KNN,SVM,NB分类器提供最多100%的识别精度。
translated by 谷歌翻译
认识到人类的感情在日常沟通中发挥着关键作用。神经科学已经证明,不同的情绪状态存在于不同脑区,脑电图频带和颞戳中不同程度的激活。在本文中,我们提出了一种新颖的结构来探索情感认可的信息脑电图。所提出的模块,由PST-Integn表示,由位置,光谱和颞件注意力模块组成,用于探索更多辨别性EEG特征。具体地,位置注意模块是捕获在空间尺寸中的不同情绪刺激的激活区域。光谱和时间注意力模块分别分配不同频带和时间片的权重。我们的方法是自适应的,也可以符合其作为插入式模块的3D卷积神经网络(3D-CNN)。我们在两个现实世界数据集进行实验。 3D-CNN结合我们的模块实现了有希望的结果,并证明了PST-关注能够从脑电图中捕获稳定的情感识别模式。
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
目的:卷积神经网络(CNN)在脑部计算机界面(BCI)领域表现出巨大的潜力,因为它们能够直接处理无人工特征提取而直接处理原始脑电图(EEG)。原始脑电图通常表示为二维(2-D)矩阵,由通道和时间点组成,忽略了脑电图的空间拓扑信息。我们的目标是使带有原始脑电图信号的CNN作为输入具有学习EEG空间拓扑特征的能力,并改善其分类性能,同时实质上保持其原始结构。方法:我们提出了一个EEG地形表示模块(TRM)。该模块由(1)从原始脑电图信号到3-D地形图的映射块和(2)从地形图到与输入相同大小的输出的卷积块组成。我们将TRM嵌入了3个广泛使用的CNN中,并在2种不同类型的公开数据集中测试了它们。结果:结果表明,使用TRM后,两个数据集都在两个数据集上提高了3个CNN的分类精度。在模拟驾驶数据集(EBDSDD)和2.83 \%,2.17 \%和2.17 \%\%和2.17 \%和2.00 \%的紧急制动器上,具有TRM的DeepConvnet,Eegnet和ShandowConvnet的平均分类精度提高了4.70 \%,1.29 \%和0.91 \%高γ数据集(HGD)。意义:通过使用TRM来挖掘脑电图的空间拓扑特征,我们在2个数据集上提高了3个CNN的分类性能。另外,由于TRM的输出的大小与输入相同,因此任何具有RAW EEG信号的CNN作为输入可以使用此模块而无需更改原始结构。
translated by 谷歌翻译
传统的脑电脑接口(BCI)需要在使用之前为每个用户提供完整的数据收集,训练和校准阶段。近年来,已经开发了许多主题独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法产生较弱的性能,有些方法是计算昂贵的。潜在的真实世界应用程序将极大地受益于更准确,紧凑,并计算高效的主题的BCI。在这项工作中,我们提出了一个名为CCSPNET(卷积公共空间模式网络)的新型主题独立的BCI框架,该框架被训练在大型脑电图(EEG)信号数据库中的电动机图像(MI)范例上,由400个试验组成每54名科目执行两班手机MI任务。所提出的框架应用小波核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。对于空间特征提取来实现公共空间模式(CSP)算法,并且通过密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以具有紧凑的BCI,可实现与复杂和计算昂贵的模型相当的SD和SI最先进的性能。
translated by 谷歌翻译
作为第二个最常见的神经变性疾病,帕金森病导致全世界严重问题。然而,PD的原因和机制尚不清楚,未建立PD的系统早期诊断和治疗,许多PD患者未被诊断或误诊。在本文中,我们提出了一种基于EEG的诊断方法来诊断帕金森病,它使用插值方法将EEG信号的频带能量映射到二维图像,并使用帽识别分类,实现了短时脑电图的89.34%的分类准确度超过传统SVM模型的部分。在不同EEG频段上的单独分类精度的比较揭示了伽马带中的最高精度,这表明我们需要更多地关注PD早期阶段的伽马带变化的变化。
translated by 谷歌翻译
基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
为了开发有效和高效的脑电器界面(BCI)系统,非常需要精确地解码脑电图(EEG)测量的大脑活动。传统作品在不考虑电极之间的拓扑关系的情况下分类EEG信号。然而,神经科学研究越来越强调了脑动力学的网络模式。因此,电极的欧几里德结构可能无法充分反映信号之间的相互作用。为了填补差距,提出了一种基于图形卷积神经网络(GCNS)的新型深度学习框架,以增强在不同类型的电动机图像(MI)任务期间的原始EEG信号的解码性能,同时与电极的功能拓扑关系协作。基于绝对Pearson的总体信号矩阵,建立了EEG电极的图拉普拉斯。由图形卷积层构建的GCNS-NET学会了广义特征。遵循的汇集层减少了维度,并且完全连接的软墨幅层衍射最终预测。已介绍的方法已被证明可以为个性化和群体的预测汇聚。与现有研究相比,它分别在受试者和组级别实现了最高平均准确度,93.056%和88.57%(物理仪数据集),96.24%和80.89%(高伽玛数据集),这表明个人适应性和鲁棒性变化性。此外,在交叉验证的重复实验中,性能稳定地再现。为了得出结论,基于功能拓扑关系的GCNS-Net滤波器EEG信号,该关系管理用于解码脑电机图像的相关特征。
translated by 谷歌翻译
由于其出色的表现,深度学习框架在脑电脑界面(BCI)学习中越来越受欢迎。然而,在单独的分类模型方面,它们被视为黑匣子,因为它们没有提供有关LED它们达到特定决定的任何信息。换句话说,我们不能说服神经生理因素是否引起了高性能或简单的噪音。由于这个缺点,与他们的高性能相比,难以确保足够的可靠性。在这项研究中,我们向BCI提出了可解释的深度学习模式。具体地,我们的目标是对从电动机图像(MI)任务中获得的EEG信号进行分类。此外,我们采用了层次的相关性传播(LRP)到模型,以解释模型导出某些分类输出的原因。我们可视化热图,该热线图表明了地形形式的LRP输出,以证明神经生理因素。此外,我们通过避免主题依赖性来分类脑电图,以学习鲁棒和广义eEG特征。该方法还提供了避免为每个主题建立培训数据的牺牲的优势。通过我们所提出的模型,我们为所有受试者获得了广义的热爱图案。结果,我们可以得出结论,我们的拟议模型提供了神经生理学上可靠的解释。
translated by 谷歌翻译
上肢运动分类将输入信号映射到目标活动,是控制康复机器人技术的关键领域之一。分类器接受了康复系统的培训,以理解上肢无法正常工作的患者的欲望。肌电图(EMG)信号和脑电图(EEG)信号广泛用于上肢运动分类。通过分析实时脑电图和EMG信号的分类结果,系统可以理解用户的意图,并预测人们希望执行的事件。因此,它将为用户提供外部帮助,以协助一个人进行活动。但是,由于嘈杂的环境,并非所有用户都处理有效的脑电图和EMG信号。实时数据收集过程中的噪声污染了数据的有效性。此外,并非所有患者由于肌肉损伤和神经肌肉疾病而处理强大的EMG信号。为了解决这些问题,我们想提出一种新颖的决策级多传感器融合技术。简而言之,该系统将将EEG信号与EMG信号集成,从两个来源检索有效的信息以了解和预测用户的需求,从而提供帮助。通过对包含同时记录的脑电图和EMG信号的公开途径数据集进行测试,我们设法结论了新型系统的可行性和有效性。
translated by 谷歌翻译
苏黎世认知语言处理语料库(Zuco)提供了来自两种读取范例,正常读取和特定任务读数的眼跟踪和脑电图信号。我们分析了机器学习方法是否能够使用眼睛跟踪和EEG功能对这两个任务进行分类。我们使用聚合的句子级别功能以及细粒度的单词级别来实现模型。我们在主题内和交叉对象评估方案中测试模型。所有模型都在Zuco 1.0和Zuco 2.0数据子集上进行测试,其特征在于不同的记录程序,因此允许不同的概括水平。最后,我们提供了一系列的控制实验,以更详细地分析结果。
translated by 谷歌翻译