Function approximation has enabled remarkable advances in applying reinforcement learning (RL) techniques in environments with high-dimensional inputs, such as images, in an end-to-end fashion, mapping such inputs directly to low-level control. Nevertheless, these have proved vulnerable to small adversarial input perturbations. A number of approaches for improving or certifying robustness of end-to-end RL to adversarial perturbations have emerged as a result, focusing on cumulative reward. However, what is often at stake in adversarial scenarios is the violation of fundamental properties, such as safety, rather than the overall reward that combines safety with efficiency. Moreover, properties such as safety can only be defined with respect to true state, rather than the high-dimensional raw inputs to end-to-end policies. To disentangle nominal efficiency and adversarial safety, we situate RL in deterministic partially-observable Markov decision processes (POMDPs) with the goal of maximizing cumulative reward subject to safety constraints. We then propose a partially-supervised reinforcement learning (PSRL) framework that takes advantage of an additional assumption that the true state of the POMDP is known at training time. We present the first approach for certifying safety of PSRL policies under adversarial input perturbations, and two adversarial training approaches that make direct use of PSRL. Our experiments demonstrate both the efficacy of the proposed approach for certifying safety in adversarial environments, and the value of the PSRL framework coupled with adversarial training in improving certified safety while preserving high nominal reward and high-quality predictions of true state.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
尽管深度强化学习取得了长足的进步,但已被证明非常容易受到对国家观察的影响。尽管如此,最近试图改善强化学习的对抗性鲁棒性的努力仍然可以忍受很小的扰动,并且随着扰动大小的增加而保持脆弱。我们提出了自举的机会对抗性课程学习(BCL),这是一种新型的灵活的对抗性课程学习框架,用于强大的增强学习。我们的框架结合了两个想法:保守地自行启动每个课程阶段以及从上一个阶段的多个运行中获得的最高质量解决方案,并在课程中进行了机会主义跳过。在我们的实验中,我们表明所提出的BCL框架可以使学到的政策的鲁棒性显着改善,从而使对抗性扰动。最大的改进是乒乓球,我们的框架在最多25/255的扰动中产生了稳健性。相比之下,最好的现有方法只能忍受最高5/255的对抗噪声。我们的代码可在以下网址提供:https://github.com/jlwu002/bcl。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
这项工作研究了以下假设:与人类驾驶状态的部分可观察到的马尔可夫决策过程(POMDP)计划可以显着提高自动高速公路驾驶的安全性和效率。我们在模拟场景中评估了这一假设,即自动驾驶汽车必须在快速连续中安全执行三个车道变化。通过观测扩大(POMCPOW)算法,通过部分可观察到的蒙特卡洛计划获得了近似POMDP溶液。这种方法的表现优于过度自信和保守的MDP基准,匹配或匹配效果优于QMDP。相对于MDP基准,POMCPOW通常将不安全情况的速率降低了一半或将成功率提高50%。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
End-to-end autonomous driving provides a feasible way to automatically maximize overall driving system performance by directly mapping the raw pixels from a front-facing camera to control signals. Recent advanced methods construct a latent world model to map the high dimensional observations into compact latent space. However, the latent states embedded by the world model proposed in previous works may contain a large amount of task-irrelevant information, resulting in low sampling efficiency and poor robustness to input perturbations. Meanwhile, the training data distribution is usually unbalanced, and the learned policy is hard to cope with the corner cases during the driving process. To solve the above challenges, we present a semantic masked recurrent world model (SEM2), which introduces a latent filter to extract key task-relevant features and reconstruct a semantic mask via the filtered features, and is trained with a multi-source data sampler, which aggregates common data and multiple corner case data in a single batch, to balance the data distribution. Extensive experiments on CARLA show that our method outperforms the state-of-the-art approaches in terms of sample efficiency and robustness to input permutations.
translated by 谷歌翻译
自主驾驶有可能彻底改变流动性,因此是一个积极的研究领域。实际上,自动驾驶汽车的行为必须是可以接受的,即高效,安全和可解释的。尽管香草钢筋学习(RL)找到了表现的行为策略,但它们通常是不安全且无法解释的。安全性是通过安全的RL方法引入的,但是它们仍然无法解释,因为学习的行为在没有分别进行建模的情况下共同优化了安全性和性能。可解释的机器学习很少应用于RL。本文提出了SAFEDQN,它允许在仍然有效的同时使自动驾驶汽车的行为安全可解释。 SAFEDQN在算法上透明的同时,在预期风险和效用的效用之间提供了可以理解的语义权衡。我们表明,SAFEDQN为各种场景找到了可解释且安全的驾驶政策,并展示了最先进的显着性技术如何帮助评估风险和实用性。
translated by 谷歌翻译
大多数强化学习算法隐含地假设强同步。我们提出了针对Q学习的新颖攻击,该攻击通过延迟有限时间段的奖励信号来利用该假设所带来的漏洞。我们考虑了两种类型的攻击目标:目标攻击,旨在使目标政策被学习,以及不靶向的攻击,这只是旨在诱使奖励低的政策。我们通过一系列实验评估了提出的攻击的功效。我们的第一个观察结果是,当目标仅仅是为了最大程度地减少奖励时,奖励延迟​​攻击非常有效。的确,我们发现即使是天真的基线奖励 - 延迟攻击也在最大程度地减少奖励方面也非常成功。另一方面,有针对性的攻击更具挑战性,尽管我们表明,提出的方法在实现攻击者的目标方面仍然非常有效。此外,我们引入了第二个威胁模型,该模型捕获了一种最小的缓解措施,该模型可确保不能超出顺序使用奖励。我们发现,这种缓解仍然不足以确保稳定性延迟但保留奖励的命令。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
最近的研究表明,深层增强学习剂容易受到代理投入的小对抗扰动,这提出了对在现实世界中部署这些药剂的担忧。为了解决这个问题,我们提出了一个主要的框架,是培训加强学习代理的主要框架,以改善鲁棒性,以防止$ L_P $ -NORM偏见的对抗性攻击。我们的框架与流行的深度加强学习算法兼容,我们用深Q学习,A3C和PPO展示了其性能。我们在三个深度RL基准(Atari,Mujoco和Procgen)上进行实验,以展示我们稳健的培训算法的有效性。我们的径向-RL代理始终如一地占据了不同强度的攻击时的现有方法,并且培训更加计算效率。此外,我们提出了一种新的评估方法,称为贪婪最坏情况奖励(GWC)来衡量深度RL代理商的攻击不良鲁棒性。我们表明GWC可以有效地评估,并且对最糟糕的对抗攻击序列是对奖励的良好估计。用于我们实验的所有代码可在https://github.com/tuomaso/radial_rl_v2上获得。
translated by 谷歌翻译
不确定性下的实时计划对于在复杂的动态环境中运行的机器人至关重要。例如,考虑一下,汽车,摩托车,公共汽车等不受监管的城市交通不受监管的自动机器人车辆驾驶。机器人车辆必须在短期和长时间内计划,以便与许多具有不确定意图和不确定意图的交通参与者互动有效驾驶。然而,在很长一段时间内明确规划会产生过度的计算成本,并且在实时限制下是不切实际的。为了实现大规模计划的实时性能,这项工作从树木搜索驾驶(Lets-Drive)中引入了一种新的算法学习,该算法将计划和学习集成到封闭的循环中,并将其应用于拥挤的城市交通中的自动驾驶在模拟中。具体而言,让我们驱动器从在线规划者提供的数据中学习策略及其价值函数,该数据搜索了稀疏采样的信念树;在线规划师依次使用学习的策略和价值功能作为启发式方法来扩展其运行时性能,以实现实时机器人控制。重复这两个步骤以形成一个封闭的循环,以便计划者和学习者相互通知并同步改进。该算法以自我监督的方式自行学习,而无需人工努力明确的数据标记。实验结果表明,让驱动器的表现优于计划或学习,以及计划和学习的开环集成。
translated by 谷歌翻译
Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving.
translated by 谷歌翻译
在对关键安全环境的强化学习中,通常希望代理在所有时间点(包括培训期间)服从安全性限制。我们提出了一种称为Spice的新型神经符号方法,以解决这个安全的探索问题。与现有工具相比,Spice使用基于符号最弱的先决条件的在线屏蔽层获得更精确的安全性分析,而不会不适当地影响培训过程。我们在连续控制基准的套件上评估了该方法,并表明它可以达到与现有的安全学习技术相当的性能,同时遭受较少的安全性违规行为。此外,我们提出的理论结果表明,在合理假设下,香料会收敛到最佳安全政策。
translated by 谷歌翻译
Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.
translated by 谷歌翻译
由于交通的固有复杂性和不确定性,自主驾驶决策是一项具有挑战性的任务。例如,相邻的车辆可能随时改变其车道或超越,以通过慢速车辆或帮助交通流量。预期周围车辆的意图,估算其未来状态并将其整合到自动化车辆的决策过程中,可以提高复杂驾驶场景中自动驾驶的可靠性。本文提出了一种基于预测的深入强化学习(PDRL)决策模型,该模型在公路驾驶决策过程中考虑了周围车辆的操纵意图。该模型是使用真实流量数据训练的,并通过模拟平台在各种交通条件下进行了测试。结果表明,与深入的增强学习(DRL)模型相比,提出的PDRL模型通过减少碰撞数量来改善决策绩效,从而导致更安全的驾驶。
translated by 谷歌翻译
预计自动驾驶技术不仅可以提高移动性和道路安全性,还可以提高能源效率的益处。在可预见的未来,自动车辆(AVS)将在与人机车辆共享的道路上运行。为了保持安全性和活力,同时尽量减少能耗,AV规划和决策过程应考虑自动自动驾驶车辆与周围的人机车辆之间的相互作用。在本章中,我们描述了一种通过基于认知层次理论和强化学习开发人的驾驶员行为建模来开发共用道路上的节能自主驾驶政策的框架。
translated by 谷歌翻译