重要性采样(IS)通常用于执行违规策略评估,但容易出现几个问题,特别是当行为策略未知并且必须从数据估计时。由于例如高方差和非评估动作,目标和行为策略之间的显着差异可能导致不确定的值估计。如果使用黑盒式模型估计行为策略,则可能很难诊断潜在的问题,并确定哪些输入策略在其建议的动作和结果中不同。为了解决这个问题,我们建议估算使用原型学习的行为策略。我们在评估败血症处理的政策时应用这种方法,展示了原型如何在目标和行为政策之间提供凝聚率的差异摘要,同时保留与基线估计相当的准确性。我们还描述了原型的估计值,以更好地了解目标政策的哪些部分对估计产生最大影响。使用模拟器,我们研究限制模型以使用原型的偏差。
translated by 谷歌翻译
离线政策优化可能会对许多现实世界的决策问题产生重大影响,因为在线学习在许多应用中可能是不可行的。重要性采样及其变体是离线策略评估中一种常用的估计器类型,此类估计器通常不需要关于价值函数或决策过程模型功能类的属性和代表性能力的假设。在本文中,我们确定了一种重要的过度拟合现象,以优化重要性加权收益,在这种情况下,学到的政策可以基本上避免在最初的状态空间的一部分中做出一致的决策。我们提出了一种算法,以避免通过新的每个国家 - 邻居标准化约束过度拟合,并提供对拟议算法的理论理由。我们还显示了以前尝试这种方法的局限性。我们在以医疗风格的模拟器为中测试算法,该模拟器是从真实医院收集的记录数据集和连续的控制任务。这些实验表明,与最先进的批处理学习算法相比,所提出的方法的过度拟合和更好的测试性能。
translated by 谷歌翻译
由于患病患者经常患贫血或凝血病,因此血液产物的输血是重症监护病房(ICU)的经常干预。但是,医生做出的不当输血决定通常与并发症的风险增加和医院成本更高有关。在这项工作中,我们旨在开发一种决策支持工具,该工具使用可用的患者信息来对三种常见的血液产品(红细胞,血小板和新鲜的冷冻血浆)进行输血决策。为此,我们采用了单批批处理增强学习(RL)算法,即离散的批处理约束Q学习,以确定观察到的患者轨迹的最佳动作(输血)。同时,我们考虑了不同的国家表示方法和奖励设计机制,以评估其对政策学习的影响。实验是在两个现实世界中的重症监护数据集上进行的:MIMIC-III和UCSF。结果表明,关于输血的政策建议通过准确性和对模拟III数据集的加权重要性评估进行了与真实医院政策的可比匹配。此外,数据筛选UCSF数据集的转移学习(TL)和RL的组合可以在准确性方面可提供高达$ 17.02%的提高,而跳跃和渐近性绩效提高了18.94%和21.63%加权重要性采样在三个输血任务上平均。最后,对输血决策的模拟表明,转移的RL政策可以将患者估计的28天死亡率降低2.74%,而UCSF数据集的敏锐度率降低了1.18%。
translated by 谷歌翻译
源于机器学习和优化的临床决策支持工具可以为医疗保健提供者提供显着的价值,包括通过更好地管理重症监护单位。特别是,重要的是,患者排放任务在降低患者的住宿时间(以及相关住院费用)和放弃决策后的入院甚至死亡的风险之间存在对细微的折衷。这项工作介绍了一个端到端的一般框架,用于捕获这种权衡,以推荐患者电子健康记录的最佳放电计时决策。数据驱动方法用于导出捕获患者的生理条件的解析,离散状态空间表示。基于该模型和给定的成本函数,在数值上制定并解决了无限的地平线折扣明马尔科夫决策过程,以计算最佳的排放政策,其价值使用违规评估策略进行评估。进行广泛的数值实验以使用现实生活重症监护单元患者数据来验证所提出的框架。
translated by 谷歌翻译
顺序决策的违规政策评估方法可用于帮助识别拟议的决策政策优于当前基线政策。但是,新的决策政策可能比某些人的基线政策更好,但不是其他人。这有动力推动个性化和准确的单态治疗效果估算(HTES)。鉴于许多重要应用中存在的有限数据,个体预测可以以准确性和在这种预测中的准确性和置信度的成本。通过识别子组,我们开发一种平衡对个人化的需求,以通过识别相对于基线的新决策政策中的预期差异来自信地估计预期估计。我们提出了一种新的损失函数,用于在子组分区阶段期间的不确定性。在实验中,我们表明我们的方法可用于形成其他方法斗争的HTES的准确预测。
translated by 谷歌翻译
尽管强化学习(RL)在许多领域都取得了巨大的成功,但是当很难指定奖励并且不允许探索奖励时,将RL应用于医疗保健等现实世界中的挑战。在这项工作中,我们专注于恢复临床医生在治疗患者方面的回报。我们结合了理由,根据其潜在的未来结果来解释临床医生的治疗方法。我们使用通用的添加剂模型(GAM) - 一类准确的,可解释的模型 - 恢复奖励。在模拟和现实世界医院的数据集中,我们显示模型的表现优于基准。最后,在治疗患者时,我们的模型的解释符合几个临床准则,而我们发现常用的线性模型通常与它们相矛盾。
translated by 谷歌翻译
Learning-to-defer is a framework to automatically defer decision-making to a human expert when ML-based decisions are deemed unreliable. Existing learning-to-defer frameworks are not designed for sequential settings. That is, they defer at every instance independently, based on immediate predictions, while ignoring the potential long-term impact of these interventions. As a result, existing frameworks are myopic. Further, they do not defer adaptively, which is crucial when human interventions are costly. In this work, we propose Sequential Learning-to-Defer (SLTD), a framework for learning-to-defer to a domain expert in sequential decision-making settings. Contrary to existing literature, we pose the problem of learning-to-defer as model-based reinforcement learning (RL) to i) account for long-term consequences of ML-based actions using RL and ii) adaptively defer based on the dynamics (model-based). Our proposed framework determines whether to defer (at each time step) by quantifying whether a deferral now will improve the value compared to delaying deferral to the next time step. To quantify the improvement, we account for potential future deferrals. As a result, we learn a pre-emptive deferral policy (i.e. a policy that defers early if using the ML-based policy could worsen long-term outcomes). Our deferral policy is adaptive to the non-stationarity in the dynamics. We demonstrate that adaptive deferral via SLTD provides an improved trade-off between long-term outcomes and deferral frequency on synthetic, semi-synthetic, and real-world data with non-stationary dynamics. Finally, we interpret the deferral decision by decomposing the propagated (long-term) uncertainty around the outcome, to justify the deferral decision.
translated by 谷歌翻译
机器学习已成功构建许多顺序决策,作为监督预测,或通过加强学习的最佳决策政策识别。在数据约束的离线设置中,两种方法可能会失败,因为它们假设完全最佳行为或依赖于探索可能不存在的替代方案。我们介绍了一种固有的不同方法,该方法识别出状态空间的可能的“死角”。我们专注于重症监护病房中患者的状况,其中``“医疗死亡端”表明患者将过期,无论所有潜在的未来治疗序列如何。我们假设“治疗安全”为避免与其导致死亡事件的机会成比例的概率成比例的治疗,呈现正式证明,以及作为RL问题的帧发现。然后,我们将三个独立的深度神经模型进行自动化状态建设,死端发现和确认。我们的经验结果发现,死亡末端存在于脓毒症患者的真正临床数据中,并进一步揭示了安全处理与施用的差距。
translated by 谷歌翻译
败血症是ICU死亡的主要原因。这是一种需要在短时间内进行复杂干预措施的疾病,但其最佳治疗策略仍然不确定。证据表明,当前使用的治疗策略的实践是有问题的,可能对患者造成伤害。为了解决这个决策问题,我们提出了一个基于历史数据的新医疗决策模型,以帮助临床医生建议实时治疗的最佳参考选项。我们的模型将离线强化学习与深入的强化学习结合在一起,以解决医疗保健中传统的强化学习无法与环境互动的问题,从而使我们的模型能够在连续的国家行动空间中做出决策。我们证明,平均而言,模型推荐的治疗方法比临床医生建议的治疗更有价值和可靠。在大型验证数据集中,我们发现临床医生实际剂量与AI的决定相匹配的患者的死亡率最低。我们的模型为败血症提供了个性化的,可解释的治疗决策,可以改善患者护理。
translated by 谷歌翻译
模拟器为因果效应估计制作独特的基准,因为它们不依赖于无法验证的假设或干预现实世界的能力,但往往太简单,无法捕获实际应用的重要方面。我们提出了Alzheimer疾病的模拟器,旨在建模医疗保健数据的复杂性,同时实现因果效应和政策估算的基准。我们将系统拟合到阿尔茨海默病神经影像倡议(ADNI)数据集和地面手工制作组件,从比较治疗试验和观察治疗模式的结果中。模拟器包括改变因果推理任务的性质和难度,例如潜在变量,效果异质性,观察到的历史长度,行为策略和样本大小的参数。我们使用模拟器比较平均和条件治疗效果的估计。
translated by 谷歌翻译
非政策评估(OPE)方法是评估高风险领域(例如医疗保健)中的政策的关键工具,在这些领域,直接部署通常是不可行的,不道德的或昂贵的。当期望部署环境发生变化(即数据集偏移)时,对于OPE方法,在此类更改中对策略进行强大的评估非常重要。现有的方法考虑对可以任意改变环境的任何可观察到的任何可观察到的属性的大量转变。这通常会导致对公用事业的高度悲观估计,从而使可能对部署有用的政策无效。在这项工作中,我们通过研究领域知识如何帮助提供对政策公用事业的更现实的估计来解决上述问题。我们利用人类的投入,在环境的哪些方面可能会发生变化,并适应OPE方法仅考虑这些方面的转变。具体而言,我们提出了一个新颖的框架,可靠的OPE(绳索),该框架认为基于用户输入的数据中的协变量子集,并估算了这些变化下最坏情况的效用。然后,我们为OPE开发了对OPE的计算有效算法,这些算法对上述强盗和马尔可夫决策过程的上述变化很强。我们还理论上分析了这些算法的样品复杂性。从医疗领域进行的合成和现实世界数据集进行了广泛的实验表明,我们的方法不仅可以捕获现实的数据集准确地转移,而且还会导致较少的悲观政策评估。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
We study the problem of off-policy value evaluation in reinforcement learning (RL), where one aims to estimate the value of a new policy based on data collected by a different policy. This problem is often a critical step when applying RL to real-world problems. Despite its importance, existing general methods either have uncontrolled bias or suffer high variance. In this work, we extend the doubly robust estimator for bandits to sequential decision-making problems, which gets the best of both worlds: it is guaranteed to be unbiased and can have a much lower variance than the popular importance sampling estimators. We demonstrate the estimator's accuracy in several benchmark problems, and illustrate its use as a subroutine in safe policy improvement. We also provide theoretical results on the inherent hardness of the problem, and show that our estimator can match the lower bound in certain scenarios.
translated by 谷歌翻译
直接从观察数据中直接从观察数据中学习最佳患者的最佳治疗策略,人们对利用RL和随机控制方法有很大的兴趣。但是,控制目标和标准RL目标的最佳奖励选择存在明显的歧义。在这项工作中,我们提出了针对重症患者的临床动机控制目标,该价值功能具有简单的医学解释。此外,我们提出理论结果并将我们的方法调整为实用的深度RL算法,该算法可以与任何基于值的深度RL方法一起使用。我们在大型败血症队列上进行实验,并表明我们的方法与临床知识一致。
translated by 谷歌翻译
Existing statistical methods can be used to estimate a policy, or a mapping from covariates to decisions, which can then instruct decision makers. There is great interest in using such data-driven policies in healthcare. In healthcare, however, it is often important to explain to the healthcare provider, and to the patient, how a new policy differs from the current standard of care. This end is facilitated if one can pinpoint the aspects (i.e., parameters) of the policy that change most when moving from the standard of care to the new, suggested policy. To this end, we adapt ideas from Trust Region Policy Optimization. In our work, however, unlike in Trust Region Policy Optimization, the difference between the suggested policy and standard of care is required to be sparse, aiding with interpretability. In particular, we trade off between maximizing expected reward and minimizing the $L_1$ norm divergence between the parameters of the two policies. This yields "relative sparsity," where, as a function of a tuning parameter, $\lambda$, we can approximately control the number of parameters in our suggested policy that differ from their counterparts in the standard of care. We develop our methodology for the observational data setting. We propose a problem-specific criterion for selecting $\lambda$, perform simulations, and illustrate our method with a real, observational healthcare dataset, deriving a policy that is easy to explain in the context of the current standard of care. Our work promotes the adoption of data-driven decision aids, which have great potential to improve health outcomes.
translated by 谷歌翻译
各种研究中的主要研究目标是使用观察数据集,并提供一种可以产生因果改进的新的反事准则。人动态治疗制度(DTRS)被广泛研究以正规化此过程。然而,在寻找最佳DTR中的可用方法通常依赖于现实世界应用(例如,医学决策或公共政策)违反的假设,特别是当(a)不可忽视未观察到的混乱时,并且(b)未观察到的混乱是时变(例如,受前一个行动的影响)。当违反这种假设时,人们经常面临关于所需的潜在因果模型来获得最佳DTR的歧视。这种歧义是不可避免的,因为无法从观察到的数据中理解未观察到的混血者的动态及其对观察到的数据的因果影响。通过案例研究,为在移植后接受伴随医院移植的患者的患者寻找卓越的治疗方案,并在移植后遇到称为新的发病糖尿病(NODAT),我们将DTR扩展到一个新阶级,被称为暧昧的动态治疗制度(ADTR) ,其中根据潜在因果模型的“云”评估治疗方案的随意影响。然后,我们将Adtrs连接到Saghafian(2018)提出的暧昧部分可观察标记决策过程(APOMDPS),并开发了两种加强学习方法,称为直接增强V-Learning(DAV-Learning)和安全增强V-Learning(SAV-Learning),其中使用观察到的数据能够有效地学习最佳治疗方案。我们为这些学习方法制定理论结果,包括(弱)一致性和渐近正常性。我们进一步评估了这些学习方法在案例研究和仿真实验中的性能。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
在上下文土匪中,非政策评估(OPE)已在现实世界中迅速采用,因为它仅使用历史日志数据就可以离线评估新政策。不幸的是,当动作数量较大时,现有的OPE估计器(其中大多数是基于反相反的得分加权)会严重降解,并且可能会遭受极端偏见和差异。这挫败了从推荐系统到语言模型的许多应用程序中使用OPE。为了克服这个问题,我们提出了一个新的OPE估计器,即当动作嵌入在动作空间中提供结构时,利用边缘化的重要性权重。我们表征了所提出的估计器的偏差,方差和平方平方误差,并分析了动作嵌入提供了比常规估计器提供统计益处的条件。除了理论分析外,我们还发现,即使由于大量作用,现有估计量崩溃,经验性绩效的改善也可以实现可靠的OPE。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
通过观察自己的行为来了解决策者的优先事项对于在医疗保健等决策过程中的透明度和问责制至关重要。尽管传统的政策学习方法几乎总是假定行为的平稳性,但在实践中几乎不正确:随着临床专业人员随着时间的流逝,医学实践不断发展。例如,随着医学界对器官移植的理解多年来的发展,一个相关的问题是:实际的器官分配政策如何发展?为了给出答案,我们希望采用一种政策学习方法,该方法提供了可解释的决策代表,尤其是捕获代理商对世界的非统计知识,并以离线方式运作。首先,我们将决策者的不断发展的行为对上下文的强盗进行了建模,并正式化了背景匪徒(ICB)的问题。其次,我们提出了两种混凝土算法作为解决方案,学习代理行为的学习参数和非参数表示。最后,使用真实和模拟数据进行肝移植,我们说明了我们方法的适用性和解释性,以及基准测试并验证其准确性。
translated by 谷歌翻译