许多现代化的机器学习任务需要具有高尾部性能的模型,即在数据集中最严格的样本上的高性能。该问题已广泛研究了算法公平,类别不平衡和风险敏感决策等领域。一种最大化模型的尾部性能的流行方法是最大限度地减少CVAR(风险条件值)损失,这计算了损失尾部的平均风险。然而,对于通过零一次损耗评估模型的分类任务,我们表明,如果分类器是确定性的,那么平均零一个损耗的最小值也会最小化CVAR零一次损耗,表明CVAR损耗最小化是最小化的没有额外的假设没有帮助。我们通过最大限度地减少随机分类器的CVAR损失来规避这种负面结果,其中平均零一个损耗和CVAR零一次损耗的最小化器不再相同,因此最小化后者可能导致更好的尾部性能。为了学习这样的随机分类器,我们提出了增强的CVAR分类框架,该框架通过CVAR与称为LPBoost的经典升压算法之间的直接关系而激励。基于此框架,我们设计了一种称为$ \ alpha $ -adalpboost的算法。我们在四个基准数据集中凭经验评估了我们所提出的算法,并显示它比确定性模型训练方法更高的尾部性能。
translated by 谷歌翻译
公平的机器学习研究人员(ML)围绕几个公平标准结合,这些标准为ML模型公平提供了正式的定义。但是,这些标准有一些严重的局限性。我们确定了这些正式公平标准的四个主要缺点,并旨在通过扩展性能预测以包含分配强大的目标来帮助解决这些问题。
translated by 谷歌翻译
在许多现实世界中的机器学习应用中,亚种群的转移存在着极大地存在,指的是包含相同亚种群组的培训和测试分布,但在亚种群频率中有所不同。重要性重新加权是通过对训练数据集中每个样本施加恒定或自适应抽样权重来处理亚种群转移问题的正常方法。但是,最近的一些研究已经认识到,这些方法中的大多数无法改善性能,而不是经验风险最小化,尤其是当应用于过度参数化的神经网络时。在这项工作中,我们提出了一个简单而实用的框架,称为“不确定性感知混合”(UMIX),以根据样品不确定性重新加权“混合”样品来减轻过度参数化模型中的过度拟合问题。基于训练 - 注射器的不确定性估计为每个样品的拟议UMIX配备,以灵活地表征亚群分布。我们还提供有见地的理论分析,以验证UMIX是否在先前的工作中实现了更好的概括界限。此外,我们在广泛的任务上进行了广泛的经验研究,以验证我们方法的有效性,既有定性和定量。
translated by 谷歌翻译
多集团不可知学习是一个正式的学习标准,涉及人口亚组内的预测因子的条件风险。标准解决了最近的实际问题,如亚组公平和隐藏分层。本文研究了对多组学习问题的解决方案的结构,为学习问题提供了简单和近最佳的算法。
translated by 谷歌翻译
尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
在对抗性鲁棒性的背景下,单个模型通常没有足够的力量来防御所有可能的对抗攻击,因此具有亚最佳的鲁棒性。因此,新兴的工作重点是学习神经网络的合奏,以防止对抗性攻击。在这项工作中,我们采取了一种有原则的方法来建立强大的合奏。我们从增强保证金的角度观察了这个问题,并开发了一种学习最大利润的合奏的算法。通过在基准数据集上进行广泛的经验评估,我们表明我们的算法不仅超过了现有的结合技术,而且还以端到端方式训练的大型模型。我们工作的一个重要副产品是边缘最大化的跨肠损失(MCE)损失,这是标准跨侧面(CE)损失的更好替代方法。从经验上讲,我们表明,用MCE损失取代最先进的对抗训练技术中的CE损失会导致显着提高性能。
translated by 谷歌翻译
Overparameterized neural networks can be highly accurate on average on an i.i.d.test set yet consistently fail on atypical groups of the data (e.g., by learning spurious correlations that hold on average but not in such groups). Distributionally robust optimization (DRO) allows us to learn models that instead minimize the worst-case training loss over a set of pre-defined groups. However, we find that naively applying group DRO to overparameterized neural networks fails: these models can perfectly fit the training data, and any model with vanishing average training loss also already has vanishing worst-case training loss. Instead, the poor worst-case performance arises from poor generalization on some groups. By coupling group DRO models with increased regularization-a stronger-than-typical 2 penalty or early stopping-we achieve substantially higher worst-group accuracies, with 10-40 percentage point improvements on a natural language inference task and two image tasks, while maintaining high average accuracies. Our results suggest that regularization is important for worst-group generalization in the overparameterized regime, even if it is not needed for average generalization. Finally, we introduce a stochastic optimization algorithm, with convergence guarantees, to efficiently train group DRO models.
translated by 谷歌翻译
我们提出了简单的主动采样和重新重量策略,以优化最小最大公平性,可以应用于通过损耗最小化学习的任何分类或回归模型。我们的方法背后的关键直觉是在每个TIMESTEP中使用来自当前模型中最差的组的DataPoint,以更新模型。实施的易于实现和我们稳健的制定的一般性使其成为提高糟糕表现群体的模型性能的有吸引力的选择。对于凸起的学习问题,如线性或逻辑回归,我们提供了对我们的策略的细粒度分析,证明了其收敛速度对Min-Max Fair解决方案。
translated by 谷歌翻译
转移学习或域适应性与机器学习问题有关,在这些问题中,培训和测试数据可能来自可能不同的概率分布。在这项工作中,我们在Russo和Xu发起的一系列工作之后,就通用错误和转移学习算法的过量风险进行了信息理论分析。我们的结果也许表明,也许正如预期的那样,kullback-leibler(kl)Divergence $ d(\ mu || \ mu')$在$ \ mu $和$ \ mu'$表示分布的特征中起着重要作用。培训数据和测试测试。具体而言,我们为经验风险最小化(ERM)算法提供了概括误差上限,其中两个分布的数据在训练阶段都可用。我们进一步将分析应用于近似的ERM方法,例如Gibbs算法和随机梯度下降方法。然后,我们概括了与$ \ phi $ -Divergence和Wasserstein距离绑定的共同信息。这些概括导致更紧密的范围,并且在$ \ mu $相对于$ \ mu' $的情况下,可以处理案例。此外,我们应用了一套新的技术来获得替代的上限,该界限为某些学习问题提供了快速(最佳)的学习率。最后,受到派生界限的启发,我们提出了Infoboost算法,其中根据信息测量方法对源和目标数据的重要性权重进行了调整。经验结果表明了所提出的算法的有效性。
translated by 谷歌翻译
Machine learning models (e.g., speech recognizers) are usually trained to minimize average loss, which results in representation disparityminority groups (e.g., non-native speakers) contribute less to the training objective and thus tend to suffer higher loss. Worse, as model accuracy affects user retention, a minority group can shrink over time. In this paper, we first show that the status quo of empirical risk minimization (ERM) amplifies representation disparity over time, which can even make initially fair models unfair. To mitigate this, we develop an approach based on distributionally robust optimization (DRO), which minimizes the worst case risk over all distributions close to the empirical distribution. We prove that this approach controls the risk of the minority group at each time step, in the spirit of Rawlsian distributive justice, while remaining oblivious to the identity of the groups. We demonstrate that DRO prevents disparity amplification on examples where ERM fails, and show improvements in minority group user satisfaction in a real-world text autocomplete task.
translated by 谷歌翻译
虽然神经网络在平均病例的性能方面对分类任务的成功显着,但它们通常无法在某些数据组上表现良好。这样的组信息可能是昂贵的;因此,即使在培训数据不可用的组标签不可用,较稳健性和公平的最新作品也提出了改善最差组性能的方法。然而,这些方法通常在培训时间使用集团信息的表现不佳。在这项工作中,我们假设没有组标签的较大数据集一起访问少量组标签。我们提出了一个简单的两步框架,利用这个部分组信息来提高最差组性能:训练模型以预测训练数据的丢失组标签,然后在强大的优化目标中使用这些预测的组标签。从理论上讲,我们在最差的组性能方面为我们的方法提供泛化界限,展示了泛化误差如何相对于培训点总数和具有组标签的培训点的数量。凭经验,我们的方法优于不使用群组信息的基线表达,即使只有1-33%的积分都有组标签。我们提供消融研究,以支持我们框架的稳健性和可扩展性。
translated by 谷歌翻译
The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of high-level, pre-defined groups (such as race or gender), and then ask for approximate parity of some statistic of the classifier (like positive classification rate or false positive rate) across these groups. Constraints of this form are susceptible to (intentional or inadvertent) fairness gerrymandering, in which a classifier appears to be fair on each individual group, but badly violates the fairness constraint on one or more structured subgroups defined over the protected attributes (such as certain combinations of protected attribute values). We propose instead to demand statistical notions of fairness across exponentially (or infinitely) many subgroups, defined by a structured class of functions over the protected attributes. This interpolates between statistical definitions of fairness, and recently proposed individual notions of fairness, but it raises several computational challenges. It is no longer clear how to even check or audit a fixed classifier to see if it satisfies such a strong definition of fairness. We prove that the computational problem of auditing subgroup fairness for both equality of false positive rates and statistical parity is equivalent to the problem of weak agnostic learning -which means it is computationally hard in the worst case, even for simple structured subclasses. However, it also suggests that common heuristics for learning can be applied to successfully solve the auditing problem in practice.We then derive two algorithms that provably converge to the best fair distribution over classifiers in a given class, given access to oracles which can optimally solve the agnostic learning problem. The algorithms are based on a formulation of subgroup fairness as a two-player zero-sum game between a Learner (the primal player) and an Auditor (the dual player). Both algorithms compute an equilibrium of this game. We obtain our first algorithm by simulating play of the game by having Learner play an instance of the no-regret Follow the Perturbed Leader algorithm, and having Auditor play best response. This algorithm provably converges to an approximate Nash equilibrium (and thus to an approximately optimal subgroup-fair distribution over classifiers) in a polynomial number of steps. We obtain our second algorithm by simulating play of the game by having both players play Fictitious Play, which enjoys only provably asymptotic convergence, but has the merit of simplicity and faster per-step computation. We implement the Fictitious Play version using linear regression as a heuristic oracle, and show that we can effectively both audit and learn fair classifiers on real datasets.
translated by 谷歌翻译
事实证明,知识蒸馏是使用教师模型的预测来改善学生模型的一项有效技术。但是,最近的工作表明,在数据中的亚组中,平均效率的提高并不统一,尤其是在稀有亚组和类别上的准确性通常可能以准确性为代价。为了在可能遵循长尾分配的课程中保持强劲的表现,我们开发了蒸馏技术,这些技术是为了改善学生最差的级别表现而定制的。具体来说,我们为教师和学生介绍了不同组合的强大优化目标,并进一步允许在整体准确性和强大的最差目标之间进行任何权衡训练。我们从经验上表明,与其他基线方法相比,我们强大的蒸馏技术不仅可以实现更好的最差级别性能,而且还可以改善整体性能和最差的级别性能之间的权衡。从理论上讲,我们提供有关在目标培训健壮学生时使一名好老师的见解。
translated by 谷歌翻译
标签 - 不平衡和组敏感分类中的目标是优化相关的指标,例如平衡错误和相同的机会。经典方法,例如加权交叉熵,在训练深网络到训练(TPT)的终端阶段时,这是超越零训练误差的训练。这种观察发生了最近在促进少数群体更大边值的直观机制之后开发启发式替代品的动力。与之前的启发式相比,我们遵循原则性分析,说明不同的损失调整如何影响边距。首先,我们证明,对于在TPT中训练的所有线性分类器,有必要引入乘法,而不是添加性的Logit调整,以便对杂项边缘进行适当的变化。为了表明这一点,我们发现将乘法CE修改的连接到成本敏感的支持向量机。也许是违反,我们还发现,在培训开始时,相同的乘法权重实际上可以损害少数群体。因此,虽然在TPT中,添加剂调整无效,但我们表明它们可以通过对乘法重量的初始负效应进行抗衡来加速会聚。通过这些发现的动机,我们制定了矢量缩放(VS)丢失,即捕获现有技术作为特殊情况。此外,我们引入了对群体敏感分类的VS损失的自然延伸,从而以统一的方式处理两种常见类型的不平衡(标签/组)。重要的是,我们对最先进的数据集的实验与我们的理论见解完全一致,并确认了我们算法的卓越性能。最后,对于不平衡的高斯 - 混合数据,我们执行泛化分析,揭示平衡/标准错误和相同机会之间的权衡。
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
尽管过度参数化的模型已经在许多机器学习任务上表现出成功,但与培训不同的测试分布的准确性可能会下降。这种准确性下降仍然限制了在野外应用机器学习的限制。同时,重要的加权是一种处理分配转移的传统技术,已被证明在经验和理论上对过度参数化模型的影响较小甚至没有影响。在本文中,我们提出了重要的回火来改善决策界限,并为过度参数化模型取得更好的结果。从理论上讲,我们证明在标签移位和虚假相关设置下,组温度的选择可能不同。同时,我们还证明正确选择的温度可以解脱出少数群体崩溃的分类不平衡。从经验上讲,我们使用重要性回火来实现最严重的小组分类任务的最新结果。
translated by 谷歌翻译
当获取新数据或开发新的架构时,更新机器学习模型。这些更新通常会增加模型性能,但可能会引入向后兼容性错误,其中单个用户或用户组在更新的模型上看到其性能受到不利影响。当培训数据集没有准确反映整体人口人口统计数据时,也可以出现这个问题,其中一些群体具有整体参与数据收集过程,构成了重大的公平问题。我们分析了分配稳健性和最低限度公平的思想如何有助于在这种情况下向后兼容性,并提出两种方法直接解决此问题。我们的理论分析由CIFAR-10,Celeba和Waterbirds的实验结果支持,三个标准图像分类数据集。github.com/natalialmg/groupbc可用的代码
translated by 谷歌翻译
尽管大规模的经验风险最小化(ERM)在各种机器学习任务中取得了高精度,但公平的ERM受到公平限制与随机优化的不兼容的阻碍。我们考虑具有离散敏感属性以及可能需要随机求解器的可能性大型模型和数据集的公平分类问题。现有的内部处理公平算法在大规模设置中要么是不切实际的,因为它们需要在每次迭代时进行大量数据,要么不保证它们会收敛。在本文中,我们开发了第一个具有保证收敛性的随机内处理公平算法。对于人口统计学,均衡的赔率和公平的机会均等的概念,我们提供了算法的略有变化,称为Fermi,并证明这些变化中的每一个都以任何批次大小收敛于随机优化。从经验上讲,我们表明Fermi适合具有多个(非二进制)敏感属性和非二进制目标的随机求解器,即使Minibatch大小也很小,也可以很好地表现。广泛的实验表明,与最先进的基准相比,FERMI实现了所有经过测试的设置之间的公平违规和测试准确性之间最有利的权衡,该基准是人口统计学奇偶校验,均衡的赔率,均等机会,均等机会。这些好处在小批量的大小和非二元分类具有大量敏感属性的情况下尤其重要,这使得费米成为大规模问题的实用公平算法。
translated by 谷歌翻译
尽管在各种应用中取得了显着成功,但众所周知,在呈现出分发数据时,深度学习可能会失败。为了解决这一挑战,我们考虑域泛化问题,其中使用从相关训练域系列绘制的数据进行训练,然后在不同和看不见的测试域中评估预测器。我们表明,在数据生成的自然模型和伴随的不变性条件下,域泛化问​​题等同于无限维约束的统计学习问题;此问题构成了我们的方法的基础,我们呼叫基于模型的域泛化。由于解决深度学习中受约束优化问题的固有挑战,我们利用非凸显二元性理论,在二元间隙上紧张的界限发展这种统计问题的不受约束放松。基于这种理论动机,我们提出了一种具有收敛保证的新型域泛化算法。在我们的实验中,我们在几个基准中报告了最多30个百分点的阶段概括基座,包括彩色,Camelyon17-Wilds,FMOW-Wilds和PAC。
translated by 谷歌翻译
用于分类任务的机器学习算法的最终性能通常根据基于测试数据集的经验误差概率(或准确性)来衡量。然而,这些算法通过基于训练集的典型不同 - 更方便的损耗功能而优化了这些算法。对于分类任务,这种损失函数通常是负值损耗,导致众所周知的交叉熵风险,这通常比误差概率更好地表现出(从数值角度)。关于泛化误差的常规研究通常不会考虑训练和测试阶段的损失之间的潜在不匹配。在这项工作中,考虑到基于精度度量和负对数损耗的训练,基于概括的Pock-Wise Pac方法的分析。我们标记此分析Pacman。建立所提到的不匹配可以写成似然比,浓度不平等可以用于根据一些有意义的信息理论量的一些点智选一的界限提供一些关于泛化问题的见解。还提供了对所得界限的分析和与文献中的可用结果进行比较。
translated by 谷歌翻译