A matrix free and a low rank approximation preconditioner are proposed to accelerate the convergence of stochastic gradient descent (SGD) by exploiting curvature information sampled from Hessian-vector products or finite differences of parameters and gradients similar to the BFGS algorithm. Both preconditioners are fitted with an online updating manner minimizing a criterion that is free of line search and robust to stochastic gradient noise, and further constrained to be on certain connected Lie groups to preserve their corresponding symmetry or invariance, e.g., orientation of coordinates by the connected general linear group with positive determinants. The Lie group's equivariance property facilitates preconditioner fitting, and its invariance property saves any need of damping, which is common in second-order optimizers, but difficult to tune. The learning rate for parameter updating and step size for preconditioner fitting are naturally normalized, and their default values work well in most situations.
translated by 谷歌翻译
Deep Learning optimization involves minimizing a high-dimensional loss function in the weight space which is often perceived as difficult due to its inherent difficulties such as saddle points, local minima, ill-conditioning of the Hessian and limited compute resources. In this paper, we provide a comprehensive review of 12 standard optimization methods successfully used in deep learning research and a theoretical assessment of the difficulties in numerical optimization from the optimization literature.
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
We propose an efficient method for approximating natural gradient descent in neural networks which we call Kronecker-factored Approximate Curvature (K-FAC). K-FAC is based on an efficiently invertible approximation of a neural network's Fisher information matrix which is neither diagonal nor low-rank, and in some cases is completely non-sparse. It is derived by approximating various large blocks of the Fisher (corresponding to entire layers) as being the Kronecker product of two much smaller matrices. While only several times more expensive to compute than the plain stochastic gradient, the updates produced by K-FAC make much more progress optimizing the objective, which results in an algorithm that can be much faster than stochastic gradient descent with momentum in practice. And unlike some previously proposed approximate natural-gradient/Newton methods which use high-quality non-diagonal curvature matrices (such as Hessian-free optimization), K-FAC works very well in highly stochastic optimization regimes. This is because the cost of storing and inverting K-FAC's approximation to the curvature matrix does not depend on the amount of data used to estimate it, which is a feature typically associated only with diagonal or low-rank approximations to the curvature matrix.
translated by 谷歌翻译
We explore the usage of the Levenberg-Marquardt (LM) algorithm for regression (non-linear least squares) and classification (generalized Gauss-Newton methods) tasks in neural networks. We compare the performance of the LM method with other popular first-order algorithms such as SGD and Adam, as well as other second-order algorithms such as L-BFGS , Hessian-Free and KFAC. We further speed up the LM method by using adaptive momentum, learning rate line search, and uphill step acceptance.
translated by 谷歌翻译
We introduce SketchySGD, a stochastic quasi-Newton method that uses sketching to approximate the curvature of the loss function. Quasi-Newton methods are among the most effective algorithms in traditional optimization, where they converge much faster than first-order methods such as SGD. However, for contemporary deep learning, quasi-Newton methods are considered inferior to first-order methods like SGD and Adam owing to higher per-iteration complexity and fragility due to inexact gradients. SketchySGD circumvents these issues by a novel combination of subsampling, randomized low-rank approximation, and dynamic regularization. In the convex case, we show SketchySGD with a fixed stepsize converges to a small ball around the optimum at a faster rate than SGD for ill-conditioned problems. In the non-convex case, SketchySGD converges linearly under two additional assumptions, interpolation and the Polyak-Lojaciewicz condition, the latter of which holds with high probability for wide neural networks. Numerical experiments on image and tabular data demonstrate the improved reliability and speed of SketchySGD for deep learning, compared to standard optimizers such as SGD and Adam and existing quasi-Newton methods.
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
牛顿方法和Adagrad等高级优化算法受益于二阶导数或二阶统计,以实现更好的下降方向和更快的收敛速率。在他们的心中,这种算法需要计算矩阵的矩阵的反平方根或反平方根,其大小是搜索空间维度的二次。对于高维搜索空间,平方根的矩阵反转或反转变为压倒性的,进而需要近似方法。在这项工作中,我们提出了一种新的矩阵近似方法,该方法将矩阵分为块,并将每个块代表一个或两个数字。该方法允许有效地计算矩阵逆和逆平方根。我们将我们的方法应用于Adagrad,以培训深层神经网络。实验表明与对角线近似相比令人鼓舞的结果。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
二阶优化器被认为具有加快神经网络训练的潜力,但是由于曲率矩阵的尺寸巨大,它们通常需要近似值才能计算。最成功的近似家庭是Kronecker因块状曲率估计值(KFAC)。在这里,我们结合了先前工作的工具,以评估确切的二阶更新和仔细消融以建立令人惊讶的结果:由于其近似值,KFAC与二阶更新无关,尤其是,它极大地胜过真实的第二阶段更新。订单更新。这一挑战广泛地相信,并立即提出了为什么KFAC表现如此出色的问题。为了回答这个问题,我们提出了强烈的证据,表明KFAC近似于一阶算法,该算法在神经元上执行梯度下降而不是权重。最后,我们表明,这种优化器通常会在计算成本和数据效率方面改善KFAC。
translated by 谷歌翻译
目前,深层神经网络(DNN)主要使用一阶方法进行训练。其中一些方法(例如Adam,Adagrad和Rmsprop及其变体)通过使用对角线矩阵来预先处理随机梯度。最近,通过通过按层块 - diagonal矩阵对随机梯度进行预处理,已开发出有效的二阶方法,例如KFAC,K-BFGS,洗发水和TNT。在这里,我们提出了一种自适应的“迷你块Fisher(MBF)”预处理方法,其中在这两类方法之间。具体而言,我们的方法对经验渔民矩阵使用块对基近似值,在DNN中的每一层(无论是卷积还是馈送)和完全连接,相关的对角线本身都是块 - diagonal,并且由A组成。大量适度的迷你块。我们的新方法利用GPU的并行性来有效地对每一层的大量矩阵进行计算。因此,MBF的均值计算成本仅略高于一阶方法。将我们提出的方法的性能与在自动编码器和CNN问题上的几种基线方法进行了比较,以在时间效率和概括功率方面验证其有效性。最后,证明MBF的理想化版本线性收敛。
translated by 谷歌翻译
在本文中,我们提出了SC-REG(自助正规化)来学习过共同的前馈神经网络来学习\ EMPH {牛顿递减}框架的二阶信息进行凸起问题。我们提出了具有自助正规化(得分-GGN)算法的广义高斯 - 牛顿,其每次接收到新输入批处理时都会更新网络参数。所提出的算法利用Hessian矩阵中的二阶信息的结构,从而减少训练计算开销。虽然我们的目前的分析仅考虑凸面的情况,但数值实验表明了我们在凸和非凸面设置下的方法和快速收敛的效率,这对基线一阶方法和准牛顿方法进行了比较。
translated by 谷歌翻译
结构化参数空间的自然梯度下降(NGD)(例如,低级CovariRces)是由于困难的Fisher矩阵计算而在计算上具有挑战性。我们通过使用\ emph {local-parameter坐标}来解决此问题,以获取灵活且高效的NGD方法,适用于各种结构化参数化。我们显示了四个应用程序,我们的方法(1)概括指数自然进化策略,(2)恢复现有的牛顿样算法,(3)通过矩阵组产生新的结构化二阶算法,(4)给出了新的算法高斯和基于Wishart的分布的协方差。我们展示了深度学习,变分推论和进化策略的一系列问题。我们的工作为可扩展结构化几何方法开辟了新的方向。
translated by 谷歌翻译
尽管主要使用一阶方法来训练深层学习模型,但尤其是自然梯度方法,仍然是利益,因为它们通过使用曲率信息加速训练的可能性。已经提出了几种具有非对角线预处理矩阵,包括KFAC,洗发剂和K-BFG的方法,并显示有效。基于所谓的张量正常(TN)分布,我们提出并分析了一种全新的近似自然梯度方法,张量正常训练(TNT),如洗发水,只需要了解训练参数的形状。通过近似基于概率的Fisher矩阵,与经验丰富的Fisher矩阵相反,我们的方法使用基于采样的梯度的块明智的协方差作为预处理矩阵。此外,假设基于采样的(张量)梯度遵循TN分布,确保其协方差具有Kronecker可分离结构,这导致到Fisher矩阵的易逼近。因此,TNT的内存需求和迭代计算成本仅略高于一阶方法的计算成本。在我们的实验中,TNT对最先进的一阶方法以及最先进的二阶方法KFAC和洗发剂的可比优化性能表现出卓越的优化性能。此外,TNT证明了其概括的能力以及使用较少的时期的一级方法。
translated by 谷歌翻译
大量数据集上的培训机学习模型会产生大量的计算成本。为了减轻此类费用,已经持续努力开发数据有效的培训方法,这些方法可以仔细选择培训示例的子集,以概括为完整的培训数据。但是,现有方法在为在提取子集训练的模型的质量提供理论保证方面受到限制,并且在实践中的表现可能差。我们提出了Adacore,该方法利用数据的几何形状提取培训示例的子集以进行有效的机器学习。我们方法背后的关键思想是通过对Hessian的指数平均估计值动态近似损耗函数的曲率,以选择加权子集(核心),这些子集(核心)可提供与Hessian的完整梯度预处理的近似值。我们证明,对应用于Adacore选择的子集的各种一阶和二阶方法的收敛性有严格的保证。我们的广泛实验表明,与基准相比,ADACORE提取了质量更高的核心,并加快了对凸和非凸机学习模型的训练,例如逻辑回归和神经网络,超过2.9倍,超过4.5倍,而随机子集则超过4.5倍。 。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
学习率调度程序已在培训深层神经网络中广泛采用。尽管它们的实际重要性,但其实践与理论分析之间存在差异。例如,即使是出于优化二次目标等简单问题,也不知道哪些SGD的时间表达到了最佳收敛性。在本文中,我们提出了本特征库,这是第一个可以在二次目标上获得最小值最佳收敛速率(最多达到常数)的最佳最佳收敛速率(最多达到常数),当时基础Hessian矩阵的特征值分布偏好。这种情况在实践中很普遍。实验结果表明,在CIFAR-10上的图像分类任务中,特征库可以显着超过阶跃衰减,尤其是当时期数量较小时。此外,该理论激发了两个简单的学习率调度程序,用于实用应用程序,可以近似特征。对于某些问题,提议的调度程序的最佳形状类似于余弦衰减的最佳形状,这阐明了余弦衰减在这种情况下的成功。对于其他情况,建议的调度程序优于余弦衰减。
translated by 谷歌翻译
This paper proposes a new optimization algorithm called Entropy-SGD for training deep neural networks that is motivated by the local geometry of the energy landscape. Local extrema with low generalization error have a large proportion of almost-zero eigenvalues in the Hessian with very few positive or negative eigenvalues. We leverage upon this observation to construct a local-entropy-based objective function that favors well-generalizable solutions lying in large flat regions of the energy landscape, while avoiding poorly-generalizable solutions located in the sharp valleys. Conceptually, our algorithm resembles two nested loops of SGD where we use Langevin dynamics in the inner loop to compute the gradient of the local entropy before each update of the weights. We show that the new objective has a smoother energy landscape and show improved generalization over SGD using uniform stability, under certain assumptions. Our experiments on convolutional and recurrent networks demonstrate that Entropy-SGD compares favorably to state-of-the-art techniques in terms of generalization error and training time.
translated by 谷歌翻译
在针对机器学习(ML)的优化中,典型的曲率 - 矩阵(CM)估计依赖于局部估计的指数平均值(给出EA-CM算法)。这种方法几乎没有原则上的理由,但是经常在实践中使用。在本文中,我们在EA-CM算法和所谓的“二次正规化模型的唤醒”之间建立了联系。概述的连接使我们能够从优化的角度了解EA-CM算法正在做什么。从已建立的联系中概括,我们提出了一种新的算法系列,即“ KL-Divergence唤醒指定模型”(KLD-WRM)。我们给出了KLD-WRM的三种不同的实例化,并以数值的方式表明,这些实例化在MNIST上的表现优于K-FAC。
translated by 谷歌翻译