语言模型的学习和表示语言与人类不同。他们学习形式而不是含义。因此,为了评估语言模型解释性的成功,我们需要考虑其与用户语言心理模型的差异的影响。在该立场论文中,我们认为,为了避免有害合理化并实现对语言模型的真实理解,解释过程必须满足三个主要条件:(1)解释必须真实地代表模型行为,即具有很高的忠诚; (2)解释必须完整,因为缺少信息会扭曲事实; (3)解释必须考虑到用户的心理模型,逐步验证一个人的知识并适应他们的理解。我们介绍了一个决策树模型,以展示当前解释未能达到目标的潜在原因。我们进一步强调了以人为本的设计从多个角度解释该模型的必要性,从而逐步将解释调整为不断变化的用户期望。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译
作为人工智能(AI)的技术子领域,可解释的AI(XAI)已经产生了广泛的算法集合,为研究人员和从业者提供了一个工具箱,用于构建XAI应用程序。凭借丰富的应用机会,解释性已经超越了数据科学家或研究人员的需求,以了解他们发展的模型,成为人们信任的重要要求,并采用部署在众多域中的AI。然而,解释性是一种本质上以人为本的财产,该领域开始接受以人为本的方法。人机互动(HCI)研究和用户体验(UX)设计在该地区的设计越来越重要。在本章中,我们从Xai算法技术景观的高级概述开始,然后选择性地调查我们自己和其他最近的HCI工作,以便以人为本的设计,评估,为Xai提供概念和方法工具。我们询问问题``以人为本的方式为Xai'做了什么,并突出了三个角色,通过帮助导航,评估和扩展Xai工具箱来塑造XAI技术的三个角色:通过用户解释性需要推动技术选择揭示现有XAI方法的缺陷,并通知新方法,为人类兼容的XAI提供概念框架。
translated by 谷歌翻译
以人为中心的可解释人工智能(HCXAI)社区提出了将解释过程作为人与机器之间的对话进行构建。在该立场论文中,我们为基于文本的对话剂建立了Desiderata,能够使用自然语言进行交互方式解释神经模型的行为。从自然语言处理(NLP)研究的角度来看,我们设计了这种调解人的蓝图,以进行情感分析的任务,并评估当前的研究在基于对话的解释方面走上了多远。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
当向人类解释AI行为时,人类的解释如何理解传达的信息,并且它是否与解释试图交流的内容相匹配?我们什么时候可以说解释正在解释某件事?我们旨在通过利用有关人类用来理解行为的民间概念的思维理论来提供答案。我们建立了人类言论的社会归因框架,该框架描述了解释的功能:人类从他们那里理解的信息。具体而言,有效的解释应产生连贯的心理模型(传达有关其他对比案例的信息),完整(传达对对比案例的明确因果叙事,代表原因,影响的表示和外部原因)以及互动(表面和解决矛盾,通过审讯到概括属性)。我们证明,许多XAI机制可以映射到民间行为概念。这使我们能够发现它们的故障模式,以防止当前方法有效解释,以及启用连贯解释所必需的。
translated by 谷歌翻译
为了提高模型透明度并允许用户形成训练有素的ML模型的心理模型,解释对AI和机器学习(ML)社区的兴趣越来越高。但是,解释可以超越这种方式通信作为引起用户控制的机制,因为一旦用户理解,他们就可以提供反馈。本文的目的是介绍研究概述,其中解释与交互式功能相结合,是从头开始学习新模型并编辑和调试现有模型的手段。为此,我们绘制了最先进的概念图,根据其预期目的以及它们如何构建相互作用,突出它们之间的相似性和差异来分组相关方法。我们还讨论开放研究问题并概述可能的方向,希望促使人们对这个开花研究主题进行进一步的研究。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
现有的可解释人工智能(XAI)算法的界限仅限于技术用户对解释性的需求所基于的问题。这项研究范式不成比例地忽略了XAI的非技术最终用户的较大群体,他们没有技术知识,但需要在其AI-ASS辅助批判性决定中进行解释。缺乏以解释性为重点的功能支持可能会阻碍在医疗保健,刑事司法,金融和自动驾驶系统等高风险领域中对AI的安全和负责任的使用。在这项工作中,我们探讨了如何设计为最终用户的关键任务量身定制的XAI如何激发新技术问题的框架。为了引起用户对XAI算法的解释和要求,我们首先将八个解释表格确定为AI研究人员和最终用户之间的通信工具,例如使用功能,示例或规则来解释。然后,我们在实现不同的解释目标(例如验证AI决策并改善用户的预测结果)的背景下,使用32名外行参与者进行用户研究。基于用户研究结果,我们确定并提出新颖的XAI技术问题,并根据用户的解释目标提出评估度量验证能力。我们的工作表明,在最终用户使用XAI中解决技术问题可以激发新的研究问题。这样的最终用户启发的研究问题有可能通过使人工智能民主化并确保在关键领域中对AI负责使用,从而促进社会利益。
translated by 谷歌翻译
人们普遍认为,人工智能(AI)系统,尤其是使用机器学习(ML)的系统,应该能够“解释”其行为。不幸的是,关于什么构成“解释”几乎没有共识。这引起了系统为可解释的人工智能(XAI)提供的解释与用户和其他受众真正需要的解释之间的解释,这些解释应由全部功能角色,受众,受众和解释能力的全部范围定义。在本文中,我们探讨了解释的特征以及如何使用这些功能评估其实用性。我们专注于根据其功能角色定义的解释要求,试图理解它们的用户的知识状态以及生成它们所需的信息的可用性。此外,我们讨论了XAI对系统的信任的风险,而无需建立他们的信任度,并为XAI领域建立指标以指导和基础系统生成的解释的实用性定义了关键的下一步。
translated by 谷歌翻译
许多政府举措(例如欧盟的GDPR)正在得出结论,即现代软件系统的越来越复杂程度必须与对这些工具的影响评估的一些权利和指标形成鲜明对比,使人们能够理解和监督产出自动化决策系统。可解释的ai诞生于允许人类探索和理解复杂系统的内部工作的途径。但是,建立什么是解释和客观地评估可解释性,不是琐碎的任务。通过本文,我们提出了一种新的模型 - 不可知性的指标,以测量以客观方式测量(正确)信息的解释程度,利用普通语言哲学的特定理论模型,称为ACHINSTEIN的解释理论,通过依赖于算法实现知识图提取和信息检索的深语模型。为了了解这种度量是否实际表现为可解释性,我们已经设计了一些实验和用户研究,涉及超过160名参与者评估了使用包括人工神经网络的着名AI技术的医疗保健和金融的基于医疗保健和金融的基于医疗保健系统和treeshap。我们获得的结果非常令人鼓舞,这表明我们拟议的测量可解释程度的指标对若干情景是强大的,并且最终可以利用自动决策系统的合法影响评估。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译
Explainability is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the topic, yet explainability still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the product of evidence stemming from the model and its input-output and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's decision-making) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are ope rationalized and provide new insight into common explanation methods that we analyze as case studies.
translated by 谷歌翻译
可解释的人工智能(XAI)中方法的动机通常包括检测,量化和缓解偏见,并为使机器学习模型更加公平而做出贡献。但是,确切的XAI方法可以如何帮助打击偏见。在本文中,我们简要回顾了NLP研究中的解释性和公平性的趋势,确定了当前的实践,其中采用了解释性方法来检测和减轻偏见,并调查了阻止XAI方法在解决公平问题中更广泛使用的障碍。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
自动错误通常涉及培训数据和学习过程,调试机器学习模型很难。如果我们没有关于模型如何实际工作的线索,这变得更加困难。在这项调查中,我们审查了利用解释的论文使人类提供反馈和调试NLP模型。我们称这个问题解释为基础的人类调试(EBHD)。特别是,我们沿着EBHD的三个维度(错误上下文,工作流程和实验设置)分类和讨论现有工作,编译EBHD组件如何影响反馈提供商的调查结果,并突出可能是未来的研究方向的打开问题。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译