当在新的类或新任务上逐步训练时,深度神经网络易于灾难性遗忘,因为对新数据的适应导致旧课程和任务的性能急剧下降。通过使用小记忆进行排练和知识蒸馏,已证明最近的方法可有效缓解灾难性的遗忘。然而,由于内存的尺寸有限,旧的和新类可用的数据量之间的大不平衡仍然存在,这导致模型的整体精度恶化。为了解决这个问题,我们建议使用平衡的软制跨熵损失,并表明它可以与进出的方法相结合,以便在某些情况下降低培训过程的计算成本,以提高其性能。对竞争的想象,Subimagenet和CiFar100数据集的实验显示了最艺术态度的结果。
translated by 谷歌翻译
我们考虑了类增量学习(CIL)问题,其中学习代理人通过逐步到达的培训数据批次不断学习新课程,并旨在在迄今为止所学的所有课程中很好地预测。问题的主要挑战是灾难性的遗忘,对于基于典范的示例性记忆方法,通常众所周知,遗忘通常是由于分类评分偏差引起的,该分类得分偏差是由于新类和新类之间的数据失衡而注射的旧课(在示例记忆中)。尽管已经提出了几种方法来通过一些其他后处理(例如,得分重新缩放或平衡的微调)来纠正这种分数偏见,但没有对这种偏见的根本原因进行系统分析。为此,我们分析了通过组合所有旧类和新类的输出得分来计算SoftMax概率的主要原因。然后,我们提出了一种新方法,称为分离的软磁性学习(SS-IL),该方法由分离的SoftMax(SS)输出层组成,结合了任务知识蒸馏(TKD)来解决此类偏见。在几个大规模CIL基准数据集的广泛实验结果中,我们通过在没有任何其他后处理的情况下获得更加平衡的预测分数来表明我们的SS-IL实现了强大的最新准确性。
translated by 谷歌翻译
Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model-a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and Im-ageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.
translated by 谷歌翻译
Conventionally, deep neural networks are trained offline, relying on a large dataset prepared in advance. This paradigm is often challenged in real-world applications, e.g. online services that involve continuous streams of incoming data. Recently, incremental learning receives increasing attention, and is considered as a promising solution to the practical challenges mentioned above. However, it has been observed that incremental learning is subject to a fundamental difficulty -catastrophic forgetting, namely adapting a model to new data often results in severe performance degradation on previous tasks or classes. Our study reveals that the imbalance between previous and new data is a crucial cause to this problem. In this work, we develop a new framework for incrementally learning a unified classifier, i.e. a classifier that treats both old and new classes uniformly. Specifically, we incorporate three components, cosine normalization, less-forget constraint, and inter-class separation, to mitigate the adverse effects of the imbalance. Experiments show that the proposed method can effectively rebalance the training process, thus obtaining superior performance compared to the existing methods. On CIFAR-100 and ImageNet, our method can reduce the classification errors by more than 6% and 13% respectively, under the incremental setting of 10 phases.
translated by 谷歌翻译
Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks -a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatialbased distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively. 5
translated by 谷歌翻译
深度学习模型在逐步学习新任务时遭受灾难性遗忘。已经提出了增量学习,以保留旧课程的知识,同时学习识别新课程。一种典型的方法是使用一些示例来避免忘记旧知识。在这种情况下,旧类和新课之间的数据失衡是导致模型性能下降的关键问题。由于数据不平衡,已经设计了几种策略来纠正新类别的偏见。但是,他们在很大程度上依赖于新旧阶层之间偏见关系的假设。因此,它们不适合复杂的现实世界应用。在这项研究中,我们提出了一种假设不足的方法,即多粒性重新平衡(MGRB),以解决此问题。重新平衡方法用于减轻数据不平衡的影响;但是,我们从经验上发现,他们将拟合新的课程。为此,我们进一步设计了一个新颖的多晶正式化项,该项使模型还可以考虑除了重新平衡数据之外的类别的相关性。类层次结构首先是通过将语义或视觉上类似类分组来构建的。然后,多粒性正则化将单热标签向量转换为连续的标签分布,这反映了基于构造的类层次结构的目标类别和其他类之间的关系。因此,该模型可以学习类间的关系信息,这有助于增强新旧课程的学习。公共数据集和现实世界中的故障诊断数据集的实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
持续学习(CL)旨在开发单一模型适应越来越多的任务的技术,从而潜在地利用跨任务的学习以资源有效的方式。 CL系统的主要挑战是灾难性的遗忘,在学习新任务时忘记了早期的任务。为了解决此问题,基于重播的CL方法在遇到遇到任务中选择的小缓冲区中维护和重复培训。我们提出梯度Coreset重放(GCR),一种新颖的重播缓冲区选择和使用仔细设计的优化标准的更新策略。具体而言,我们选择并维护一个“Coreset”,其与迄今为止关于当前模型参数的所有数据的梯度紧密近似,并讨论其有效应用于持续学习设置所需的关键策略。在学习的离线持续学习环境中,我们在最先进的最先进的最先进的持续学习环境中表现出显着的收益(2%-4%)。我们的调查结果还有效地转移到在线/流媒体CL设置,从而显示现有方法的5%。最后,我们展示了持续学习的监督对比损失的价值,当与我们的子集选择策略相结合时,累计增益高达5%。
translated by 谷歌翻译
Modern machine learning suffers from catastrophic forgetting when learning new classes incrementally. The performance dramatically degrades due to the missing data of old classes. Incremental learning methods have been proposed to retain the knowledge acquired from the old classes, by using knowledge distilling and keeping a few exemplars from the old classes. However, these methods struggle to scale up to a large number of classes. We believe this is because of the combination of two factors: (a) the data imbalance between the old and new classes, and (b) the increasing number of visually similar classes. Distinguishing between an increasing number of visually similar classes is particularly challenging, when the training data is unbalanced. We propose a simple and effective method to address this data imbalance issue. We found that the last fully connected layer has a strong bias towards the new classes, and this bias can be corrected by a linear model. With two bias parameters, our method performs remarkably well on two large datasets: ImageNet (1000 classes) and MS-Celeb-1M (10000 classes), outperforming the state-of-the-art algorithms by 11.1% and 13.2% respectively.
translated by 谷歌翻译
当以连续的方式学习新任务时,深层神经网络倾向于忘记他们以前学到的任务,这种现象称为灾难性遗忘。班级增量学习方法旨在通过记忆以前学到的任务的一些示例,并从中蒸馏出知识来解决此问题。但是,现有的方法努力平衡跨课程的性能,因为它们通常将模型过于最新任务。在我们的工作中,我们建议通过引入一种实现级别平衡性能的逐步学习(TKIL)的新型方法来解决这些挑战。该方法保留了各个类别的表示形式,并平衡了每个类别的准确性,因此可以更好地达到总体准确性和差异。 TKIL方法基于神经切线核(NTK),该神经网络将神经网络作为无限宽度极限的内核函数的收敛行为。在tkil中,特征层之间的梯度被视为这些层的表示之间的距离,可以定义为切线切线损失(GTK损耗),因此将其与平均重量一起最小化。这允许TKIL自动识别任务并在推理过程中快速适应它。具有各种增量学习设置的CIFAR-100和Imagenet数据集的实验表明,这些策略允许TKIL优于现有的最新方法。
translated by 谷歌翻译
本文在课堂增量学习中使用视觉变压器(VIT)研究。令人惊讶的是,天真地应用Vit替代卷积神经网络(CNNS)导致性能下降。我们的分析揭示了三个天然使用VIT的问题:(a)vit在课程中较小时具有非常缓慢的会聚,(b)在比CNN的模型中观察到新类的更多偏差,并且(c)适当的学习率Vit太低,无法学习良好的分类器。基于此分析,我们展示了这些问题可以简单地通过使用现有技术来解决:使用卷积杆,平衡FineTuning来纠正偏置,以及分类器的更高学习率。我们的简单解决方案名为Vitil(Vit用于增量学习),为所有三类增量学习设置实现了全新的最先进的保证金,为研究界提供了强大的基线。例如,在ImageNet-1000上,我们的体内体达到69.20%的前1个精度为500个初始类别的15个初始类别,5个增量步骤(每次100个新类),表现优于leulir + dde ​​1.69%。对于10个增量步骤(100个新课程)的更具挑战性的协议,我们的方法优于PODNet 7.27%(65.13%与57.86%)。
translated by 谷歌翻译
大多数元学习方法都假设存在于可用于基本知识的情节元学习的一组非常大的标记数据。这与更现实的持续学习范例形成对比,其中数据以包含不相交类的任务的形式逐步到达。在本文中,我们考虑了这个增量元学习(IML)的这个问题,其中类在离散任务中逐步呈现。我们提出了一种方法,我们调用了IML,我们称之为eCISODIC重播蒸馏(ERD),该方法将来自当前任务的类混合到当前任务中,当研究剧集时,来自先前任务的类别示例。然后将这些剧集用于知识蒸馏以最大限度地减少灾难性的遗忘。四个数据集的实验表明ERD超越了最先进的。特别是,在一次挑战的单次次数较挑战,长任务序列增量元学习场景中,我们将IML和联合训练与当前状态的3.5%/ 10.1%/ 13.4%之间的差距降低我们在Diered-ImageNet / Mini-ImageNet / CIFAR100上分别为2.6%/ 2.9%/ 5.0%。
translated by 谷歌翻译
在课堂学习学习中,预计该模型将在保持以前课程的知识的同时,不断地学习新课程。这里的挑战在于保留该模型在功能空间中有效代表先前类的能力,同时调整其代表传入的新类。我们提出了两个基于蒸馏的目标,用于类增量学习,以利用特征空间的结构来维持以前的课程的准确性,并使学习新课程。在我们的第一个目标(称为跨空间聚类(CSC))中,我们建议使用先前模型的特征空间结构来表征优化的方向,这些方向可以最大程度地保留类 - 特定类的所有实例应集体优化,对,以及他们应该集体优化的人。除了最大程度地减少忘记之外,这种间接的鼓励模型将所有类的实例聚集在当前功能空间中,并引起牛群免疫的感觉,从而使班级的所有样本都可以将模型共同与遗忘班级共同打击模型。我们的第二个目标被称为受控转移(CT)从研究班间转移的研究的逐步学习。 CT明确近似于和条件,当前模型在逐步到达类和先验类之间的语义相似性上。这使模型可以学习类,以使其从相似的先前类中最大化正向转移,从而提高可塑性,并最大程度地减少不同先验类别的负向后转移,从而增强稳定性。我们在两个基准数据集上执行了广泛的实验,并在三种突出的课堂学习方法的顶部添加了我们的方法(CSCCT)。我们观察到各种实验环境的性能一致。
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
The dynamic expansion architecture is becoming popular in class incremental learning, mainly due to its advantages in alleviating catastrophic forgetting. However, task confusion is not well assessed within this framework, e.g., the discrepancy between classes of different tasks is not well learned (i.e., inter-task confusion, ITC), and certain priority is still given to the latest class batch (i.e., old-new confusion, ONC). We empirically validate the side effects of the two types of confusion. Meanwhile, a novel solution called Task Correlated Incremental Learning (TCIL) is proposed to encourage discriminative and fair feature utilization across tasks. TCIL performs a multi-level knowledge distillation to propagate knowledge learned from old tasks to the new one. It establishes information flow paths at both feature and logit levels, enabling the learning to be aware of old classes. Besides, attention mechanism and classifier re-scoring are applied to generate more fair classification scores. We conduct extensive experiments on CIFAR100 and ImageNet100 datasets. The results demonstrate that TCIL consistently achieves state-of-the-art accuracy. It mitigates both ITC and ONC, while showing advantages in battle with catastrophic forgetting even no rehearsal memory is reserved.
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
在学习新知识时,班级学习学习(CIL)与灾难性遗忘和无数据CIL(DFCIL)的斗争更具挑战性,而无需访问以前学过的课程的培训数据。尽管最近的DFCIL作品介绍了诸如模型反转以合成以前类的数据,但由于合成数据和真实数据之间的严重域间隙,它们无法克服遗忘。为了解决这个问题,本文提出了有关DFCIL的关系引导的代表学习(RRL),称为R-DFCIL。在RRL中,我们引入了关系知识蒸馏,以灵活地将新数据的结构关系从旧模型转移到当前模型。我们的RRL增强DFCIL可以指导当前的模型来学习与以前类的表示更好地兼容的新课程的表示,从而大大减少了在改善可塑性的同时遗忘。为了避免表示和分类器学习之间的相互干扰,我们在RRL期间采用本地分类损失而不是全球分类损失。在RRL之后,分类头将通过全球类平衡的分类损失进行完善,以解决数据不平衡问题,并学习新课程和以前类之间的决策界限。关于CIFAR100,Tiny-Imagenet200和Imagenet100的广泛实验表明,我们的R-DFCIL显着超过了以前的方法,并实现了DFCIL的新最新性能。代码可从https://github.com/jianzhangcs/r-dfcil获得。
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
人类智慧的主食是以不断的方式获取知识的能力。在Stark对比度下,深网络忘记灾难性,而且为此原因,类增量连续学习促进方法的子字段逐步学习一系列任务,将顺序获得的知识混合成综合预测。这项工作旨在评估和克服我们以前提案黑暗体验重播(Der)的陷阱,这是一种简单有效的方法,将排练和知识蒸馏结合在一起。灵感来自于我们的思想不断重写过去的回忆和对未来的期望,我们赋予了我的能力,即我的能力来修改其重播记忆,以欢迎有关过去数据II的新信息II)为学习尚未公开的课程铺平了道路。我们表明,这些策略的应用导致了显着的改进;实际上,得到的方法 - 被称为扩展-DAR(X-DER) - 优于标准基准(如CiFar-100和MiniimAgeNet)的技术状态,并且这里引入了一个新颖的。为了更好地了解,我们进一步提供了广泛的消融研究,以证实并扩展了我们以前研究的结果(例如,在持续学习设置中知识蒸馏和漂流最小值的价值)。
translated by 谷歌翻译
在课堂增量学习(CIL)设置中,在每个学习阶段将类别组引入模型。目的是学习到目前为止观察到的所有类别的统一模型表现。鉴于视觉变压器(VIT)在常规分类设置中的最新流行,一个有趣的问题是研究其持续学习行为。在这项工作中,我们为CIL开发了一个伪造的双蒸馏变压器,称为$ \ textrm {d}^3 \ textrm {前} $。提出的模型利用混合嵌套的VIT设计,以确保数据效率和可扩展性对小数据集和大数据集。与最近的基于VIT的CIL方法相反,我们的$ \ textrm {d}^3 \ textrm {前} $在学习新任务并仍然适用于大量增量任务时不会动态扩展其体系结构。 $ \ textrm {d}^3 \ textrm {oft} $的CIL行为的改善归功于VIT设计的两个基本变化。首先,我们将增量学习视为一个长尾分类问题,其中大多数新课程的大多数样本都超过了可用于旧课程的有限范例。为了避免对少数族裔的偏见,我们建议动态调整逻辑,以强调保留与旧任务相关的表示形式。其次,我们建议在学习跨任务进行时保留空间注意图的配置。这有助于减少灾难性遗忘,通过限制模型以将注意力保留到最歧视区域上。 $ \ textrm {d}^3 \ textrm {以前} $在CIFAR-100,MNIST,SVHN和Imagenet数据集的增量版本上获得了有利的结果。
translated by 谷歌翻译