脉络膜丛(CP)是产生大部分脑脊液(CSF)的大脑的心室的结构。几个淘汰的课后和体内研究已经指出了它们在多发性硬化症(MS)中的炎症过程中的作用。因此,来自MRI的CP的自动分割具有高价值,用于研究其在大型患者的大队列中的特征。据我们所知,CP分段唯一可自由的工具是FreeSurfer,但其对该特定结构的准确性很差。在本文中,我们建议自动从非对比度增强的T1加权MRI自动分段。为此,我们介绍了一种基于轴向多层截图(MLP)的组件的“Axial-MLP”的新模型。这是最近的作品启发,表明,变压器的自我注意层可以用MLPS取代。系统地与标准的3D U-Net,NNU-Net,FreeSurfer和Fastsurefer系统地进行系统地进行系统地进行系统地进行。对于我们的实验,我们利用141个受试者的数据集(44个对照和97名MS患者)。我们展示所有测试的深度学习(DL)方法优于FreeSurfer(DIC为0.7的骰子,对于FreeSurfer的DL 0.33)。 Axial-MLP与U-Net竞争竞争,即使它略有略低于准确。我们纸张的结论是两倍:1)学习的深度学习方法可能是研究CP在MS患者的大型队列中的有用工具; 2)〜Axial-MLP是用于这种任务的卷积神经网络的潜在可行的替代方案,尽管它可以从进一步的改进中受益。
translated by 谷歌翻译
Brain tumor imaging has been part of the clinical routine for many years to perform non-invasive detection and grading of tumors. Tumor segmentation is a crucial step for managing primary brain tumors because it allows a volumetric analysis to have a longitudinal follow-up of tumor growth or shrinkage to monitor disease progression and therapy response. In addition, it facilitates further quantitative analysis such as radiomics. Deep learning models, in particular CNNs, have been a methodology of choice in many applications of medical image analysis including brain tumor segmentation. In this study, we investigated the main design aspects of CNN models for the specific task of MRI-based brain tumor segmentation. Two commonly used CNN architectures (i.e. DeepMedic and U-Net) were used to evaluate the impact of the essential parameters such as learning rate, batch size, loss function, and optimizer. The performance of CNN models using different configurations was assessed with the BraTS 2018 dataset to determine the most performant model. Then, the generalization ability of the model was assessed using our in-house dataset. For all experiments, U-Net achieved a higher DSC compared to the DeepMedic. However, the difference was only statistically significant for whole tumor segmentation using FLAIR sequence data and tumor core segmentation using T1w sequence data. Adam and SGD both with the initial learning rate set to 0.001 provided the highest segmentation DSC when training the CNN model using U-Net and DeepMedic architectures, respectively. No significant difference was observed when using different normalization approaches. In terms of loss functions, a weighted combination of soft Dice and cross-entropy loss with the weighting term set to 0.5 resulted in an improved segmentation performance and training stability for both DeepMedic and U-Net models.
translated by 谷歌翻译
大脑磁共振成像(MRI)扫描的自动分割和体积对于诊断帕金森氏病(PD)和帕金森氏症综合症(P-Plus)至关重要。为了提高诊断性能,我们在大脑分割中采用了深度学习(DL)模型,并将其性能与金标准的非DL方法进行了比较。我们收集了健康对照组(n = 105)和PD患者(n = 105),多个全身性萎缩(n = 132)和渐进性超核麻痹(n = 69)的大脑MRI扫描。 2020.使用金标准的非DL模型FreeSurfer(FS),我们对六个脑结构进行了分割:中脑,PON,CAUDATE,CAUDATE,PUTATATE,pALLIDUM和THIRD CNTRICLE,并将其视为DL模型的注释数据,代表性V -net和unet。计算了分化正常,PD和P-Plus病例的曲线下的骰子分数和面积。每位患者六个大脑结构的V-NET和UNETR的分割时间分别为3.48 +-0.17和48.14 +-0.97 s,比FS(15,735 +-1.07 s)快至少300倍。两种DL模型的骰子得分都足够高(> 0.85),它们的疾病分类AUC优于FS。为了分类正常与P-Plus和PD与多个全身性萎缩(小脑型)的分类,DL模型和FS显示出高于0.8的AUC。 DL显着减少了分析时间,而不会损害大脑分割和差异诊断的性能。我们的发现可能有助于在临床环境中采用DL脑MRI分割并提高大脑研究。
translated by 谷歌翻译
机器学习算法支撑现代诊断辅助软件,这在临床实践中证明了有价值的,特别是放射学。然而,不准确的是,主要是由于临床样本的可用性有限,用于培训这些算法,妨碍他们在临床医生中更广泛的适用性,接受和识别。我们对最先进的自动质量控制(QC)方法进行了分析,可以在这些算法中实现,以估计其输出的确定性。我们验证了识别磁共振成像数据中的白质超收缩性(WMH)的大脑图像分割任务上最有前途的方法。 WMH是在上层前期成年中常见的小血管疾病的关联,并且由于其变化的尺寸和分布模式而尤其具有挑战性。我们的研究结果表明,不确定度和骰子预测的聚集在此任务的故障检测中最有效。两种方法在0.82至0.84的情况下独立改善平均骰子。我们的工作揭示了QC方法如何有助于检测失败的分割案例,从而使自动分割更可靠,适合临床实践。
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
检测软骨损失对于诊断骨和类风湿关节炎至关重要。到目前为止,已经有大量自动分割工具用于大型关节的磁共振图像中的软骨评估。与膝盖或臀部相比,手腕软骨具有更复杂的结构,因此为大型关节开发的自动工具预计不会用于手腕软骨分割。在这方面,全自动手腕软骨分割方法将具有很高的临床感兴趣。我们评估了U-NET体系结构的四个优化变体的性能,并截断了其深度和注意力层(U-NET_AL)。将相应的结果与我们先前设计的基于斑块的卷积神经网络(CNN)的结果进行了比较。基于使用几个形态学(2D DSC,3D DSC,精度)和体积指标的比较分析进行了比较分析评估分割质量。这四个网络在分割均匀性和质量方面优于基于补丁的CNN。使用U-NET_AL计算的中值3D DSC值(0.817)明显大于其他网络计算的相应DSC值。此外,相对于地面真相,U-NET_AL CNN提供了最低的平均体积误差(17%)和最高的Pearson相关系数(0.765)。值得注意的是,使用U-NET_AL计算出的可重复性大于手动分割的可重复性。 U-NET卷积神经网络具有额外的注意层,可提供最佳的手腕软骨分割性能。为了在临床条件下使用,可以在代表一组特定患者的数据集上微调训练的网络。软骨体积测量的误差应使用非MRI方法独立评估。
translated by 谷歌翻译
大脑的血管为人脑提供所需的营养和氧气。作为大脑血液供应的脆弱部分,小血管的病理可能会引起严重的问题,例如脑小血管疾病(CSVD)。还显示CSVD与神经变性有关,例如阿尔茨海默氏病。随着7个特斯拉MRI系统的发展,可以实现较高的空间图像分辨率,从而使大脑中非常小的血管描绘。非深度学习的方法进行血管分割的方法,例如,弗兰吉的血管增强,随后的阈值能够将培养基分割至大容器,但通常无法分割小血管。这些方法对小容器的敏感性可以通过广泛的参数调整或手动校正来提高,尽管使它们耗时,费力,并且对于较大的数据集而言是不可行的。本文提出了一个深度学习架构,以自动在7特斯拉3D飞行时间(TOF)磁共振血管造影(MRA)数据中自动分割小血管。该算法对仅11个受试者的小型半自动分段数据进行训练和评估;使用六个进行培训,两个进行验证,三个进行测试。基于U-NET多尺度监督的深度学习模型使用训练子集进行了训练,并以一种自我监督的方式使用变形 - 意识到的学习以改善概括性能。针对测试集对拟议的技术进行了定量和定性评估,并获得了80.44 $ \ pm $ 0.83的骰子得分。此外,将所提出的方法的结果与选定的手动分割区域(62.07结果骰子)进行了比较,并通过变形感知的学习显示出显着改善(18.98 \%)。
translated by 谷歌翻译
具有多级连接的深度神经网络,以复杂的方式进程输入数据来了解信息。网络学习效率不仅取决于复杂的神经网络架构,还取决于输入训练图像。具有用于头骨剥离或肿瘤的深神经网络的Medical图像分段。来自磁共振图像的分割使得能够学习图像的全局和局部特征。虽然收集在受控环境中的医学图像,但可能存在导致输入集中固有偏差的伪影或基于设备的方差。在本研究中,我们调查了具有神经网络分割精度的MR图像的图像质量指标的相关性。我们使用了3D DenSenet架构,并让网络在相同的输入上培训,但应用不同的方法来基于IQM值选择训练数据集。基于随机训练的模型之间的分割精度的差异基于IQM的训练输入揭示了图像质量指标对分割精度的作用。通过运行图像质量指标来选择培训输入,进一步调整网络的学习效率和分割精度。
translated by 谷歌翻译
State-of-the-art brain tumor segmentation is based on deep learning models applied to multi-modal MRIs. Currently, these models are trained on images after a preprocessing stage that involves registration, interpolation, brain extraction (BE, also known as skull-stripping) and manual correction by an expert. However, for clinical practice, this last step is tedious and time-consuming and, therefore, not always feasible, resulting in skull-stripping faults that can negatively impact the tumor segmentation quality. Still, the extent of this impact has never been measured for any of the many different BE methods available. In this work, we propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods. Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance. Moreover, we propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline. Our results show that this approach leads to a competitive performance at a fraction of the time. We conclude that, in contrast to the current paradigm, training tumor segmentation models on non-skull-stripped images can be the best option when high performance in clinical practice is desired.
translated by 谷歌翻译
医学成像深度学习模型通常是大而复杂的,需要专门的硬件来训练和评估这些模型。为了解决此类问题,我们提出了PocketNet范式,以减少深度学习模型的规模,通过促进卷积神经网络中的渠道数量的增长。我们证明,对于一系列的分割和分类任务,PocketNet架构产生的结果与常规神经网络相当,同时将参数数量减少多个数量级,最多使用90%的GPU记忆,并加快训练时间的加快。高达40%,从而允许在资源约束设置中培训和部署此类模型。
translated by 谷歌翻译
我们实施了两个不同的三维深度学习神经网络,并评估了它们在非对比度计算机断层扫描(CT)上看到的颅内出血(ICH)的能力。一种模型,称为“沿正交关注u-net沿正交级别的素隔离”(Viola-Unet),其体系结构元素可适应2022年实例的数据挑战。第二个比较模型是从No-New U-NET(NNU-NET)得出的。输入图像和地面真理分割图用于以监督方式分别训练两个网络。验证数据随后用于半监督培训。在5倍交叉验证期间比较了模型预测。中提琴 - UNET的表现优于四个性能指标中的两个(即NSD和RVD)的比较网络。将中提琴和NNU-NET网络组合的合奏模型在DSC和HD方面的性能最高。我们证明,与3D U-NET相关的ICH分割性能优势有效地合并了U-NET的解码分支期间的空间正交特征。 Viola-Unet AI工具的代码基础,预估计的权重和Docker图像将在https://github.com/samleoqh/viola-unet上公开获得。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
正常的胎儿脂肪组织(AT)发育对于围产期健康至关重要。在或简单地脂肪以脂质形式存储能量。营养不良可能导致过度或耗尽的肥胖。尽管以前的研究表明,AT和围产期结局的量之间存在相关性,但缺乏定量方法,对AT的产前评估受到限制。使用磁共振成像(MRI),可以从两个点Dixon图像中获得整个胎儿的3D脂肪和纯水图像,以在脂质定量时启用。本文是第一个提出一种基于Dixon MRI的胎儿脂肪分割的深度学习方法的方法。它优化了放射科医生的手动胎儿脂肪描述时间,以生成带注释的培训数据集。它由两个步骤组成:1)基于模型的半自动胎儿脂肪分割,由放射科医生进行了审查和纠正; 2)使用在所得的注释数据集中训练的DL网络的自动胎儿脂肪分割。培训了三个DL网络。与手动分割相比,我们显示出分割时间(3:38小时至<1小时)和观察者变异性(0.738至0.906)的显着改善。用3D残差U-NET,NN-UNET和SWIN-UNETR TRONSERTER网络对24个测试用例进行自动分割,平均骰子得分分别为0.863、0.787和0.856。这些结果比手动观察者的变异性更好,并且与自动成人和小儿脂肪分割相当。一名放射科医生审查并纠正了六个新的独立案例,并使用最佳性能网络进行了细分,导致骰子得分为0.961,校正时间显着减少了15:20分钟。使用这些新颖的分割方法和短暂的MRI获取时间,可以在临床和大型果园研究中量化全身皮下脂质的单个胎儿。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
简介白质超强度(WMHS)的自动分割是磁共振成像(MRI)神经影像分析的重要步骤。流体减弱的反转恢复(FLAIR加权)是MRI对比度,对于可视化和量化WMHS,这是脑小血管疾病和阿尔茨海默氏病(AD)特别有用的。临床MRI方案迁移到三维(3D)FLAIR加权的采集,以在所有三个体素维度中实现高空间分辨率。当前的研究详细介绍了深度学习工具的部署,以使自动化的WMH分割和表征从获得的3D Flair加权图像作为国家广告成像计划的一部分获得。 DDI研究中的642名参与者(283名男性,平均年龄:(65.18 +/- 9.33)年)中的材料和方法,在五个国家收集地点进行了培训和验证两个内部网络。在642名参与者的内部数据和一个外部数据集中,对三个模型进行了测试,其中包含来自国际合作者的29个情况。这些测试集进行了独立评估。使用了五个已建立的WMH性能指标与地面真理人体分割进行比较。测试的三个网络的结果,3D NNU-NET具有最佳性能,平均骰子相似性系数得分为0.78 +/- 0.10,其性能优于内部开发的2.5D模型和SOTA DEEP DEEP BAYESIAN网络。结论MRI协议中3D Flair加权图像的使用越来越多,我们的结果表明,WMH分割模型可以在3D数据上进行训练,并产生与无需更高的或更好的无需先进的WMH分割性能用于包括T1加权图像系列。
translated by 谷歌翻译
Fully Convolutional Neural Networks (FCNNs) with contracting and expanding paths have shown prominence for the majority of medical image segmentation applications since the past decade. In FCNNs, the encoder plays an integral role by learning both global and local features and contextual representations which can be utilized for semantic output prediction by the decoder. Despite their success, the locality of convolutional layers in FCNNs, limits the capability of learning long-range spatial dependencies. Inspired by the recent success of transformers for Natural Language Processing (NLP) in long-range sequence learning, we reformulate the task of volumetric (3D) medical image segmentation as a sequence-to-sequence prediction problem. We introduce a novel architecture, dubbed as UNEt TRansformers (UNETR), that utilizes a transformer as the encoder to learn sequence representations of the input volume and effectively capture the global multi-scale information, while also following the successful "U-shaped" network design for the encoder and decoder. The transformer encoder is directly connected to a decoder via skip connections at different resolutions to compute the final semantic segmentation output. We have validated the performance of our method on the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) dataset for multiorgan segmentation and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Our benchmarks demonstrate new state-of-the-art performance on the BTCV leaderboard. Code: https://monai.io/research/unetr
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译