我们提出了一个基于深度学习的自动咳嗽分类器,可以区分结核病(TB)与Covid-19咳嗽和健康咳嗽。 TB和Covid-19都是呼吸道疾病,具有传染性,咳嗽是一种主要的症状,每年夺走了数千人的生命。在室内和室外设置都收集了咳嗽的录音,并使用来自全球各地受试者的智能手机上传,因此包含各种噪声。该咳嗽数据包括1.68小时的结核病咳嗽,18.54分钟的咳嗽,咳嗽和1.69小时的健康咳嗽,47例TB患者,229例Covid-19患者和1498例健康患者,并用于培训和评估CNN,LSTM和Resnet505050 。这三个深度体系结构在2.14小时的打喷嚏,2.91小时的语音和2.79小时的噪音中也进行了预训练,以提高性能。通过使用SMOTE数据平衡技术并使用诸如F1得分和AUC之类的性能指标来解决我们数据集中的类不平衡。我们的研究表明,从预先训练的RESNET50中获得了最高的0.9259和0.8631的F1分数,两级(TB与CoVID-19)和三级(TB VS VS COVID-19与健康)的咳嗽分类,咳嗽分类,,咳嗽分类任务,三级(TB vs vs covid-19)分别。深度转移学习的应用改善了分类器的性能,并使它们更加坚固,因为它们在交叉验证折叠上更好地概括了。他们的表现超过了世界卫生组织(WHO)设定的结核病分类测试要求。产生最佳性能的功能包含MFCC的高阶,这表明人耳朵无法感知结核病和COVID-19之间的差异。这种类型的咳嗽音频分类是非接触,具有成本效益的,并且可以轻松地部署在智能手机上,因此它可以成为TB和COVID-19筛查的绝佳工具。
translated by 谷歌翻译
我们提出“唤醒咳嗽”,这是使用resnet50咳嗽到咳嗽的应用,并使用i-vectors识别咳嗽者,以实现长期的个性化咳嗽监测系统。咳嗽记录在一个安静(73 $ \ pm $ 5 dB)和嘈杂(34 $ \ pm $ 17 dB)环境中,用于提取I-向量,X-向量和D-向量,用作分类器的功能。当使用MLP使用2-SEC长咳嗽片段在嘈杂的环境中使用MLP区分51个咳嗽者时,该系统可以达到90.02 \%的精度。当在安静环境中使用更长(100秒)段的5和14个咳嗽者区分5至14个咳嗽者时,这种准确性分别提高到99.78%和98.39%。与语音不同,I-向量在识别咳嗽者方面的表现优于X-向量和D-向量。这些咳嗽是在Google语音命令数据集中添加的额外类,并通过在触发短语中保存端到端的时间域信息来提取功能。使用RESNET50在35个其他触发短语中发现咳嗽时,达到了88.58%的最高精度。因此,Wake咳嗽代表了一个个性化的,非侵入性的咳嗽监测系统,该系统的功率有效,因为在设备上的唤醒词检测可以使基于智能手机的监视设备大多处于休眠状态。这使伴尾咳嗽在多床病房环境中极具吸引力,以监测患者从肺部疾病(例如结核病(TB)和Covid-19)中的长期恢复。
translated by 谷歌翻译
Covid-19大流行为感染检测和监测解决方案产生了重大的兴趣和需求。在本文中,我们提出了一种机器学习方法,可以使用在消费者设备上进行的录音来快速分离Covid-19。该方法将信号处理方法与微调深层学习网络相结合,提供了信号去噪,咳嗽检测和分类的方法。我们还开发并部署了一个移动应用程序,使用症状检查器与语音,呼吸和咳嗽信号一起使用,以检测Covid-19感染。该应用程序对两个开放的数据集和最终用户在测试版测试期间收集的嘈杂数据显示了鲁棒性能。
translated by 谷歌翻译
Covid-19在全球范围内影响了223多个国家。迫切需要非侵入性,低成本和高度可扩展的解决方案来检测COVID-19,尤其是在PCR测试无普遍可用的低资源国家。我们的目的是开发一个深度学习模型,使用普通人群(语音录音和简短问卷)通过其个人设备自发提供的语音数据记录来识别Covid-19。这项工作的新颖性在于开发一个深度学习模型,以鉴定来自语音记录的199名患者。方法:我们使用了由893个音频样本组成的剑桥大学数据集,该数据集由4352名参与者的人群来源,这些参与者使用了COVID-19 Sounds应用程序。使用MEL光谱分析提取语音功能。根据语音数据,我们开发了深度学习分类模型,以检测阳性的Covid-19情况。这些模型包括长期术语记忆(LSTM)和卷积神经网络(CNN)。我们将它们的预测能力与基线分类模型进行了比较,即逻辑回归和支持向量机。结果:基于MEL频率CEPSTRAL系数(MFCC)功能的LSTM具有最高的精度(89%),其灵敏度和特异性分别为89%和89%,其结果通过提议的模型获得了显着改善,这表明该结果显着改善与艺术状态获得的结果相比,COVID-19诊断的预测准确性。结论:深度学习可以检测到199例患者的声音中的细微变化,并有令人鼓舞的结果。作为当前测试技术的补充,该模型可以使用简单的语音分析帮助卫生专业人员快速诊断和追踪Covid-19案例
translated by 谷歌翻译
创伤后应激障碍(PTSD)是一种长期衰弱的精神状况,是针对灾难性生活事件(例如军事战斗,性侵犯和自然灾害)而发展的。 PTSD的特征是过去的创伤事件,侵入性思想,噩梦,过度维护和睡眠障碍的闪回,所有这些都会影响一个人的生活,并导致相当大的社会,职业和人际关系障碍。 PTSD的诊断是由医学专业人员使用精神障碍诊断和统计手册(DSM)中定义的PTSD症状的自我评估问卷进行的。在本文中,这是我们第一次收集,注释并为公共发行准备了一个新的视频数据库,用于自动PTSD诊断,在野生数据集中称为PTSD。该数据库在采集条件下表现出“自然”和巨大的差异,面部表达,照明,聚焦,分辨率,年龄,性别,种族,遮挡和背景。除了描述数据集集合的详细信息外,我们还提供了评估野生数据集中PTSD的基于计算机视觉和机器学习方法的基准。此外,我们建议并评估基于深度学习的PTSD检测方法。提出的方法显示出非常有希望的结果。有兴趣的研究人员可以从:http://www.lissi.fr/ptsd-dataset/下载PTSD-in-wild数据集的副本
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
Covid-19大流行是人类的祸害,宣称全世界超过500万人的生活。虽然疫苗正在全世界分布,但表观需要实惠的筛选技术,以便为无法获得传统医学的世界服务。人工智能可以提供利用咳嗽声音作为主要筛选模式的解决方案。本文介绍了多种模型,这些模型在学术文献目前呈现的最大评估数据集上取得了相对尊敬的性能。此外,我们还显示性能随着培训数据规模而增加,表明世界各地的数据收集,以帮助使用非传统方式对抗Covid-19大流行。
translated by 谷歌翻译
我们寻求基于8,380临床验证样品的咳嗽声,评估Covid-19的快速初级筛查工具的检测性能,从8,380临床验证的样品进行实验室分子测试(2,339 Covid-19阳性和6,041个Covid-19负面)。根据患者的定量RT-PCR(QRT-PCR)分析,循环阈值和淋巴细胞计数,根据结果和严重程度临床标记样品。我们所提出的通用方法是一种基于经验模式分解(EMD)的算法,其随后基于音频特征的张量和具有称为Deplecough的卷积层的深层人工神经网络分类器的分类。基于张量尺寸的数量,即DepeCough2D和DeepCOUGH3D,两种不同版本的深度。这些方法已部署在多平台概念验证Web应用程序CoughDetect中以匿名管理此测试。 Covid-19识别结果率达到了98.800.83%,敏感性为96.431.85%的有前途的AUC(面积),特异性为96.201.74%,81.08%5.05%AUC,用于识别三个严重程度。我们提出的Web工具和支持稳健,快速,需要Covid-19的需求识别的基础算法有助于快速检测感染。我们认为,它有可能大大妨碍世界各地的Covid-19大流行。
translated by 谷歌翻译
在这项工作中,我们探讨了肺结核(TB)咳嗽分类的复发性神经网络体系结构。与以前在该领域实施深层体系结构的尝试不成功的尝试相反,我们表明基本的双向长期记忆网络(BILSTM)可以提高性能。此外,我们表明,通过与新提供的基于注意力的架构一起进行贪婪的特征选择,该体系结构学习患者不变特征,与基线和其他所考虑的架构相比,可以实现更好的概括。此外,这种注意机制允许检查被认为对进行分类很重要的音频信号的时间区域。最后,我们开发了一种神经风格转移技术来推断理想的输入,随后可以分析。我们发现结核病和非结核咳嗽的理想功率谱之间存在明显的差异,这些功率光谱为音频信号中特征的起源提供了线索。
translated by 谷歌翻译
基于人工智能的肺超声成像分析已被证明是整个Covid-19大流行中快速诊断决策支持的有效技术。但是,这种技术可能需要几天或几周的训练过程和超参数调整,以开发智能的深度学习图像分析模型。这项工作的重点是利用“现成”预培训的模型,作为以最小的训练时间为疾病严重程度得分的深度提取器。我们建议在简单和紧凑的神经网络之前使用现有方法的预训练初始化,以减少对计算能力的依赖。在时间限制或资源约束的情况下,例如大流行的早期阶段,计算能力的降低至关重要。在由49位患者组成的数据集中,包括20,000多个图像,我们证明了现有方法作为特征提取器的使用会导致有效分类COVID-19与COVID相关的肺炎严重程度,同时只需几分钟的训练时间。与专家注释的地面真相相比,我们的方法可以在4级的严重程度评分量表上达到超过0.93的准确性,并提供可比的人均区域和全球分数。这些结果表明,在COVID-19患者的临床实践中以及其他呼吸道疾病中,在临床实践中以及在其他呼吸道疾病中的临床实践中快速部署和使用这种最小化适应方法的能力。
translated by 谷歌翻译
监测普遍的空气传播疾病,例如COVID-19的特征涉及呼吸评估。虽然听诊是一种症状监测的主流方法,但其诊断效用受到专用医院就诊的需求而受到阻碍。基于便携式设备上呼吸道声音的记录,持续的远程监视是一种有希望的替代方法,可以帮助筛选Covid-19。在这项研究中,我们介绍了一种新型的深度学习方法,可以将Covid-19患者与健康对照组区分开,鉴于咳嗽或呼吸声的音频记录。所提出的方法利用新型的层次谱图变压器(HST)在呼吸声的光谱图表示上。 HST在频谱图中体现了在本地窗口上的自我发挥机制,并且窗口大小在模型阶段逐渐生长,以捕获本地环境。将HST与最新的常规和深度学习基线进行比较。在跨国数据集上进行的全面演示表明,HST优于竞争方法,在检测COVID-19案例中,在接收器操作特征曲线(AUC)下达到了97%以上的面积。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
咳嗽音频信号分类是筛查呼吸道疾病(例如COVID-19)的潜在有用工具。由于从这种传染性疾病的患者那里收集数据是危险的,因此许多研究团队已转向众包来迅速收集咳嗽声数据,因为它是为了生成咳嗽数据集的工作。 Coughvid数据集邀请专家医生诊断有限数量上传的记录中存在的潜在疾病。但是,这种方法遭受了咳嗽的潜在标签,以及专家之间的显着分歧。在这项工作中,我们使用半监督的学习(SSL)方法来提高咳嗽数据集的标签一致性以及COVID-19的鲁棒性与健康的咳嗽声音分类。首先,我们利用现有的SSL专家知识聚合技术来克服数据集中的标签不一致和稀疏性。接下来,我们的SSL方法用于识别可用于训练或增加未来咳嗽分类模型的重新标记咳嗽音频样本的子样本。证明了重新标记的数据的一致性,因为它表现出高度的类可分离性,尽管原始数据集中存在专家标签不一致,但它比用户标记的数据高3倍。此外,在重新标记的数据中放大了用户标记的音频段的频谱差异,从而导致健康和COVID-19咳嗽之间的功率频谱密度显着不同,这既证明了新数据集的一致性及其与新数据的一致性及其与新数据的一致性的提高,其解释性与其与其解释性的一致性相同。声学的观点。最后,我们演示了如何使用重新标记的数据集来训练咳嗽分类器。这种SSL方法可用于结合几位专家的医学知识,以提高任何诊断分类任务的数据库一致性。
translated by 谷歌翻译
在许多临床情况下,迫切需要具有自动呼吸声分析能力的可靠,遥远,连续的实时呼吸声监测仪,例如在监测2019年冠状病毒疾病的疾病进展中,以用手持式听觉仪替换常规的听诊。但是,在实际应用中尚未验证强大的计算机呼吸道声音分析算法。 In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686个Stridor标签和4,740个Rhonchi标签)和15,606个不连续的不定声标签(所有crack带)。我们进行了长期短期记忆(LSTM),门控复发单元(GRU),双向LSTM(BILSTM),双向GRU(BIGRU),卷积神经网络(CNN)-LSTM,CNN-GRU,CNN-BILSTM,CNN-BILSTM,CNN-BILSTM,CNN-BILSTM,CNN-GRU,我们进行了基准测试。和CNN-BIGRU模型用于呼气阶段检测和不定声检测。我们还对基于LSTM的模型,单向模型和双向模型以及带有CNN和CNN的模型之间进行了性能比较。结果表明,这些模型在肺部声音分析中表现出足够的性能。在大多数定义任务中,基于GRU的模型在接收器操作特征曲线下的F1分数和区域上优于基于LSTM的模型。此外,所有双向模型的表现都优于其单向对应物。最后,添加CNN提高了肺部声音分析的准确性,尤其是在CAS检测任务中。
translated by 谷歌翻译
随着Covid-19的周期性上升和堕落和受其后果影响的许多国家,科学家,研究人员和世界各地的医生都是巨大的工作。迅速干预敏锐需要解决对疾病的不合情理传播。通过应用深度学习算法的基础,实施人工智能(AI)对数字健康区对数字健康区进行了重大贡献。在本研究中,提出了一种新的方法,通过使用深度学习算法的集成,特别是卷积神经网络(CNN)模型来自动诊断Covid-19。在该提议的框架中使用了几种CNN模型,包括VGG16,VGG19,InceptionResNetv2,Inceptionv3,Reset50和Densenet201。 VGG16型号优于鞋底的其余部分,精度为85.92%。与VGG16模型相比,我们的结果在其余的模型中显示了相对较低的精度,这是由于所使用的数据集的尺寸较小,除了仅用于VGG16型号的网格搜索超参数优化方法。此外,我们的结果是准备的,并且可以通过进一步扩展数据集来增强所有模型的准确性,并调整合适的超参数优化技术。
translated by 谷歌翻译
COVID-19导致与不同的SARS-COV-2变体相关的多种感染波。研究报告了这些变体对患者呼吸健康的影响不同。我们探索从COVID-19受试者收集的声学信号是否显示出可区分的声学模式,这表明有可能预测潜在的病毒变体。我们分析了从三个主题库中收集的COSWARA数据集,即i)健康,ii)在三角洲变体占主导地位期间记录的covid-199受试者,以及III)来自Omicron Expear中记录的COVID-19的数据。我们的发现表明,咳嗽,呼吸和语音等多种声音类别表明,在将COVID-19与Omicron和Delta变体进行比较时,声音特征差异很大。在曲线下,分类区域大大超过了被Omicron感染的受试者与三角洲感染者的机会。使用来自多个声音类别的得分融合,我们在95%的特异性下获得了89%和52.4%的敏感性的区域。此外,使用分层三类方法将声学数据分类为健康和共同-19阳性,并将进一步的COVID受试者分为三角洲和Omicron变体,从而提供了高水平的3类分类精度。这些结果提出了设计基于声音的COVID-19诊断方法的新方法。
translated by 谷歌翻译
爆发两年多后,Covid-19的大流行继续困扰世界各地的医疗系统,给稀缺资源带来压力,并夺走了人类的生命。从一开始,已经采用了各种基于AI的CoVID-19检测和监测工具,以试图通过及时诊断来阻止感染的潮流。特别是,已经建议计算机试听是一种非侵入性,成本效益和环保的替代方法,可通过声音通过声音来检测COVID-19的感染。但是,像所有AI方法一样,计算机试镜也很大程度上取决于可用数据的数量和质量,并且由于此类数据的敏感性,大规模的COVID-19声音数据集很难获取 - 除其他原因外。为此,我们介绍了COVYT数据集 - 一种新颖的Covid-19数据集,该数据集是从包含来自65位演讲者的8个小时以上语音的公共资源中收集的。与其他现有的COVID-19声音数据集相比,COVYT数据集的独特功能是,它包括所有65位扬声器的covid-19正和负样本。我们使用可解释的音频描述来分析Covid-19的声学表现,并使用可解释的音频描述,并研究几种分类场景,并调查一些分类场景,以将基于公平的言语的COVID进行适当的分配策略-19检测。
translated by 谷歌翻译
由生物声监测设备组成的无线声传感器网络运行的专家系统的部署,从声音中识别鸟类物种将使许多生态价值任务自动化,包括对鸟类种群组成的分析或濒危物种的检测在环境感兴趣的地区。由于人工智能的最新进展,可以将这些设备具有准确的音频分类功能,其中深度学习技术出色。但是,使生物声音设备负担得起的一个关键问题是使用小脚印深神经网络,这些神经网络可以嵌入资源和电池约束硬件平台中。因此,这项工作提供了两个重型和大脚印深神经网络(VGG16和RESNET50)和轻量级替代方案MobilenetV2之间的批判性比较分析。我们的实验结果表明,MobileNetV2的平均F1得分低于RESNET50(0.789 vs. 0.834)的5 \%,其性能优于VGG16,其足迹大小近40倍。此外,为了比较模型,我们创建并公开了西部地中海湿地鸟类数据集,其中包括201.6分钟和5,795个音频摘录,摘录了20种特有鸟类的aiguamolls de l'empord \ e empord \`一个自然公园。
translated by 谷歌翻译
目的:确定逼真,但是电磁图的计算上有效模型可用于预先列车,具有广泛的形态和特定于给定条件的形态和异常 - T波段(TWA)由于创伤后应激障碍,或重点 - 在稀有人的小型数据库上显着提高了性能。方法:使用先前经过验证的人工ECG模型,我们生成了180,000人的人工ECG,有或没有重要的TWA,具有不同的心率,呼吸率,TWA幅度和ECG形态。在70,000名患者中培训的DNN进行分类为25种不同的节奏,将输出层修改为二进制类(TWA或NO-TWA,或等效,PTSD或NO-PTSD),并对人工ECG进行转移学习。在最终转移学习步骤中,DNN在ECG的培训和交叉验证,从12个PTE和24个控件,用于使用三个数据库的所有组合。主要结果:通过进行转移学习步骤,使用预先培训的心律失常DNN,人工数据和真实的PTSD相关的心电图数据,发现了最佳性能的方法(AUROC = 0.77,精度= 0.72,F1-SCATE = 0.64) 。从训练中删除人工数据导致性能的最大下降。从培训中取出心律失常数据提供了适度但重要的,表现下降。最终模型在人工数据上显示出在性能下没有显着下降,表明没有过度拟合。意义:在医疗保健中,通常只有一小部分高质量数据和标签,或更大的数据库,质量较低(和较差的相关)标签。这里呈现的范式,涉及基于模型的性能提升,通过在大型现实人工数据库和部分相关的真实数据库上传输学习来提供解决方案。
translated by 谷歌翻译
由于其在非洲以外的40多个国家 /地区的迅速传播,最近的蒙基托克斯爆发已成为公共卫生问题。由于与水痘和麻疹的相似之处,蒙基托斯在早期的临床诊断是具有挑战性的。如果不容易获得验证性聚合酶链反应(PCR)测试,那么计算机辅助检测蒙基氧基病变可能对可疑病例的监视和快速鉴定有益。只要有足够的训练示例,深度学习方法在自动检测皮肤病变中有效。但是,截至目前,此类数据集尚未用于猴蛋白酶疾病。在当前的研究中,我们首先开发``Monkeypox皮肤病变数据集(MSLD)。用于增加样本量,并建立了3倍的交叉验证实验。在下一步中,采用了几种预训练的深度学习模型,即VGG-16,Resnet50和InceptionV3用于对Monkeypox和Monkeypox和Monkeypox和其他疾病。还开发了三种型号的合奏。RESNET50达到了82.96美元(\ pm4.57 \%)$的最佳总体准确性,而VGG16和整体系统的准确性达到了81.48美元(\ pm6.87 \%)$和$ 79.26(\ pm1.05 \%)$。还开发了一个原型网络应用程序作为在线蒙基蛋白筛选工具。虽然该有限数据集的初始结果是有希望的,但需要更大的人口统计学多样化的数据集来进一步增强性增强性。这些的普遍性 楷模。
translated by 谷歌翻译