随着Covid-19的周期性上升和堕落和受其后果影响的许多国家,科学家,研究人员和世界各地的医生都是巨大的工作。迅速干预敏锐需要解决对疾病的不合情理传播。通过应用深度学习算法的基础,实施人工智能(AI)对数字健康区对数字健康区进行了重大贡献。在本研究中,提出了一种新的方法,通过使用深度学习算法的集成,特别是卷积神经网络(CNN)模型来自动诊断Covid-19。在该提议的框架中使用了几种CNN模型,包括VGG16,VGG19,InceptionResNetv2,Inceptionv3,Reset50和Densenet201。 VGG16型号优于鞋底的其余部分,精度为85.92%。与VGG16模型相比,我们的结果在其余的模型中显示了相对较低的精度,这是由于所使用的数据集的尺寸较小,除了仅用于VGG16型号的网格搜索超参数优化方法。此外,我们的结果是准备的,并且可以通过进一步扩展数据集来增强所有模型的准确性,并调整合适的超参数优化技术。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
In this paper, deep-learning-based approaches namely fine-tuning of pretrained convolutional neural networks (VGG16 and VGG19), and end-to-end training of a developed CNN model, have been used in order to classify X-Ray images into four different classes that include COVID-19, normal, opacity and pneumonia cases. A dataset containing more than 20,000 X-ray scans was retrieved from Kaggle and used in this experiment. A two-stage classification approach was implemented to be compared to the one-shot classification approach. Our hypothesis was that a two-stage model will be able to achieve better performance than a one-shot model. Our results show otherwise as VGG16 achieved 95% accuracy using one-shot approach over 5-fold of training. Future work will focus on a more robust implementation of the two-stage classification model Covid-TSC. The main improvement will be allowing data to flow from the output of stage-1 to the input of stage-2, where stage-1 and stage-2 models are VGG16 models fine-tuned on the Covid-19 dataset.
translated by 谷歌翻译
有必要开发负担得起且可靠的诊断工具,该工具允许包含COVID-19的扩散。已经提出了机器学习(ML)算法来设计支持决策系统以评估胸部X射线图像,事实证明,这些图像可用于检测和评估疾病进展。许多研究文章围绕此主题发表,这使得很难确定未来工作的最佳方法。本文介绍了使用胸部X射线图像应用于COVID-19检测的ML的系统综述,旨在就方法,体系结构,数据库和当前局限性为研究人员提供基线。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
2019年新型冠状病毒疾病(Covid-19)是一种致命的传染病,于2019年12月在中国武汉武汉(Wuhan)首次识别,并且一直处于流行状态。在这种情况下,在感染人群中检测到Covid-19变得越来越重要。如今,与感染人群数量相比,测试套件的数量逐渐减少。在最近的流行条件下,通过分析胸部CT(计算机断层扫描)图像诊断肺部疾病已成为COVID-19患者诊断和预言的重要工具。在这项研究中,已经提出了一种从CT图像检测COVID-19感染的转移学习策略(CNN)。在拟议的模型中,已经设计了具有转移学习模型V3的多层卷积神经网络(CNN)。与CNN类似,它使用卷积和汇总来提取功能,但是该传输学习模型包含数据集成像网的权重。因此,它可以非常有效地检测功能,从而使其在获得更好的准确性方面具有优势。
translated by 谷歌翻译
当前的COVID-19大流行是对人类直接影响肺部的严重威胁。 Covid-19的自动识别是卫生保健官员的挑战。用于诊断Covid-19的标准黄金方法是逆转录聚合酶链反应(RT-PCR),以从受影响的人那里收集拭子。收集拭子时遇到的一些限制与准确性和长期持续时间有关。胸部CT(计算机断层扫描)是另一种测试方法,可帮助医疗保健提供者迅速识别受感染的肺部区域。它被用作在早期阶段识别Covid-19的支持工具。借助深度学习,COVID-19的CT成像特征。研究人员已证明它对COVID-19 CT图像分类非常有效。在这项研究中,我们回顾了最近可以用来检测COVID-19疾病的深度学习技术。相关研究是由Web of Science,Google Scholar和PubMed等各种数据库收集的。最后,我们比较了不同深度学习模型的结果,并讨论了CT图像分析。
translated by 谷歌翻译
为了产生最大的影响,必须使用基于证据的决策制定公共卫生计划。创建机器学习算法是为了收集,存储,处理和分析数据以提供知识和指导决策。任何监视系统的关键部分是图像分析。截至最近,计算机视觉和机器学习的社区最终对此感到好奇。这项研究使用各种机器学习和图像处理方法来检测和预测疟疾疾病。在我们的研究中,我们发现了深度学习技术作为具有更广泛适用于疟疾检测的智能工具的潜力,通过协助诊断病情,可以使医生受益。我们研究了针对计算机框架和组织的深度学习的共同限制,计算需要准备数据,准备开销,实时执行和解释能力,并发现对这些限制的轴承的未来询问。
translated by 谷歌翻译
背景和目的:与生物医学分析相结合的人工智能(AI)方法在Pandemics期间具有关键作用,因为它有助于释放来自医疗保健系统和医生的压力压力。由于持续的Covid-19危机在具有茂密的人口和巴西和印度等测试套件中的国家恶化,放射性成像可以作为准确分类Covid-19患者的重要诊断工具,并在适当时期规定必要的治疗。通过这种动机,我们基于使用胸部X射线检测Covid-19感染肺的深度学习架构的研究。数据集:我们共收集了三种不同类标签的2470张图片,即健康的肺,普通肺炎和Covid-19感染的肺炎,其中470个X射线图像属于Covid-19类。方法:我们首先使用直方图均衡技术预处理所有图像,并使用U-Net架构进行它们。然后,VGG-16网络用于从预处理图像中的特征提取,该特征提取通过SMTE过采样技术进一步采样以实现平衡数据集。最后,使用具有10倍交叉验证的支持向量机(SVM)分类器分类类平衡功能,评估精度。结果和结论:我们的新方法结合了众所周知的预处理技术,特征提取方法和数据集平衡方法,使我们在2470 X射线图像的数据集中获得了Covid-19图像的优秀识别率为98% 。因此,我们的模型适用于用于筛选目的的医疗保健设施。
translated by 谷歌翻译
在全球范围内,有实质性的未满足需要有效地诊断各种疾病。不同疾病机制的复杂性和患者人群的潜在症状具有巨大挑战,以发展早期诊断工具和有效治疗。机器学习(ML),人工智能(AI)区域,使研究人员,医师和患者能够解决这些问题的一些问题。基于相关研究,本综述解释了如何使用机器学习(ML)和深度学习(DL)来帮助早期识别许多疾病。首先,使用来自Scopus和Science(WOS)数据库的数据来给予所述出版物的生物计量研究。对1216个出版物的生物计量研究进行了确定,以确定最多产的作者,国家,组织和最引用的文章。此次审查总结了基于机器学习的疾病诊断(MLBDD)的最新趋势和方法,考虑到以下因素:算法,疾病类型,数据类型,应用和评估指标。最后,该文件突出了关键结果,并向未来的未来趋势和机遇提供了解。
translated by 谷歌翻译
分布式声音传感器(DAS)是有效的设备,在许多应用区域中广泛使用,用于记录各种事件的信号,这些事件沿光纤沿光纤沿着非常高的空间分辨率。为了正确地检测和识别记录的事件,具有高计算需求的高级信号处理算法至关重要。卷积神经网络是提取空间信息的高功能工具,非常适合DAS中的事件识别应用。长期术语内存(LSTM)是处理顺序数据的有效仪器。在这项研究中,我们提出了一种多输入的多输出,两个阶段特征提取方法,该方法将这些神经网络体系结构的能力与转移学习的能力结合在一起,以将压电传感器应用于光纤上的振动进行分类。首先,我们从相位-OTDR记录中提取了差幅度和相位信息,并将它们存储在时间空间数据矩阵中。然后,我们在第一阶段使用了最先进的预训练的CNN作为特征提取器。在第二阶段,我们使用LSTMS进一步分析了CNN提取的特征。最后,我们使用密集层来对提取的特征进行分类。为了观察使用的CNN体​​系结构的效果,我们通过五个最先进的预训练模型(VGG-16,Resnet-50,Densenet-121,Mobilenet和Inception-V3)测试了模型。结果表明,在我们的框架中使用VGG-16体系结构可以在50个培训中获得100%的分类精度,并在我们的相位数据集中获得最佳结果。这项研究的结果表明,与LSTM结合的预训练的CNN非常适合分析差分振幅和相位信息,在时间空间数据矩阵中表示,这对于DAS应用中的事件识别操作很有希望。
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
2019年12月,中国武汉的全球大流行Covid-19影响了人类生活和全球经济。因此,需要有效的诊断系统来控制其传播。然而,自动诊断系统带来的挑战有限,标记的数据,较小的对比度变化以及感染和背景之间的高结构相似性。在这方面,提出了一种新的两阶段深卷卷卷神经网络(CNN)诊断系统来检测微小的不规则性并分析COVID-19的感染。在第一阶段,提出了一种新型的SB-STM-BRNET CNN,并结合了一个新的通道并增强并增强(SB),并基于卷积的分裂转换合并(STM)块,以检测COVID-19受感染的CT肺部图像。新的STM块执行了多路径区域平滑和边界操作,这有助于学习较小的对比度变化和全局COVID-19的特定模式。此外,使用SB和在STM块中传输学习概念来实现不同的增强渠道,以学习Covid-19特异性图像和健康图像之间的纹理变化。在第二阶段,向新型的Covid-CB-Reseg-Reseg-Rese分割CNN提供了COVID-19的感染图像,以识别和分析COVID-19的感染区域。拟议的COVID-CB-RESEG有条不紊地采用了区域同质性,异质性操作以及使用每个编码器和解码器块中的辅助通道的渠道增强,以同时学习COVID-19受感染区域的低照明和边界。提出的诊断系统在准确性方面产生良好的性能:98.21%,F-评分:98.24%,骰子相似性:96.40%,IOU:COVID-19受感染区域的98.85%。拟议的诊断系统将减轻负担,并加强放射科医生对快速准确的COVID-19诊断的决定。
translated by 谷歌翻译
COVID-19的诊断对于预防和控制该疾病是必要的。深度学习方法已被认为是一种快速准确的方法。在本文中,通过三个众所周知的预训练网络的平行组合,我们试图将感染的冠状病毒样品与健康样本区分开。负模样损耗函数已用于模型训练。SARS-COV-2数据集中的CT扫描图像用于诊断。SARS-COV-2数据集包含2482张肺CT扫描图像,其中1252张图像属于COVID-19感染的样品。提出的模型接近97%的准确性。
translated by 谷歌翻译
人工神经网络(ANN)能够学习,纠正错误和将大量原始数据转化为治疗和护理的有用医疗决策,这增加了增强患者安全和护理质量的普及。因此,本文审查了ANN的关键作用为患者医疗保健决策提供有价值的见解和有效的疾病诊断。我们彻底审查了现有文献中的不同类型的ANN,以便为复杂应用程序进行高级ANNS适配。此外,我们还调查Ann的各种疾病诊断和治疗的进步,例如病毒,皮肤,癌症和Covid-19。此外,我们提出了一种名为ConxNet的新型深度卷积神经网络(CNN)模型,用于提高Covid-19疾病的检测准确性。 ConxNet经过培训并使用不同的数据集进行测试,它达到了超过97%的检测精度和精度,这明显优于现有型号。最后,我们突出了未来的研究方向和挑战,例如算法的复杂性,可用数据,隐私和安全性,以及与ANN的生物传染集成。这些研究方向需要大幅关注改善医疗诊断和治疗应用的ANN的范围。
translated by 谷歌翻译
Covid-19在全球范围内影响了223多个国家。迫切需要非侵入性,低成本和高度可扩展的解决方案来检测COVID-19,尤其是在PCR测试无普遍可用的低资源国家。我们的目的是开发一个深度学习模型,使用普通人群(语音录音和简短问卷)通过其个人设备自发提供的语音数据记录来识别Covid-19。这项工作的新颖性在于开发一个深度学习模型,以鉴定来自语音记录的199名患者。方法:我们使用了由893个音频样本组成的剑桥大学数据集,该数据集由4352名参与者的人群来源,这些参与者使用了COVID-19 Sounds应用程序。使用MEL光谱分析提取语音功能。根据语音数据,我们开发了深度学习分类模型,以检测阳性的Covid-19情况。这些模型包括长期术语记忆(LSTM)和卷积神经网络(CNN)。我们将它们的预测能力与基线分类模型进行了比较,即逻辑回归和支持向量机。结果:基于MEL频率CEPSTRAL系数(MFCC)功能的LSTM具有最高的精度(89%),其灵敏度和特异性分别为89%和89%,其结果通过提议的模型获得了显着改善,这表明该结果显着改善与艺术状态获得的结果相比,COVID-19诊断的预测准确性。结论:深度学习可以检测到199例患者的声音中的细微变化,并有令人鼓舞的结果。作为当前测试技术的补充,该模型可以使用简单的语音分析帮助卫生专业人员快速诊断和追踪Covid-19案例
translated by 谷歌翻译
我们提出了一个基于深度学习的自动咳嗽分类器,可以区分结核病(TB)与Covid-19咳嗽和健康咳嗽。 TB和Covid-19都是呼吸道疾病,具有传染性,咳嗽是一种主要的症状,每年夺走了数千人的生命。在室内和室外设置都收集了咳嗽的录音,并使用来自全球各地受试者的智能手机上传,因此包含各种噪声。该咳嗽数据包括1.68小时的结核病咳嗽,18.54分钟的咳嗽,咳嗽和1.69小时的健康咳嗽,47例TB患者,229例Covid-19患者和1498例健康患者,并用于培训和评估CNN,LSTM和Resnet505050 。这三个深度体系结构在2.14小时的打喷嚏,2.91小时的语音和2.79小时的噪音中也进行了预训练,以提高性能。通过使用SMOTE数据平衡技术并使用诸如F1得分和AUC之类的性能指标来解决我们数据集中的类不平衡。我们的研究表明,从预先训练的RESNET50中获得了最高的0.9259和0.8631的F1分数,两级(TB与CoVID-19)和三级(TB VS VS COVID-19与健康)的咳嗽分类,咳嗽分类,,咳嗽分类任务,三级(TB vs vs covid-19)分别。深度转移学习的应用改善了分类器的性能,并使它们更加坚固,因为它们在交叉验证折叠上更好地概括了。他们的表现超过了世界卫生组织(WHO)设定的结核病分类测试要求。产生最佳性能的功能包含MFCC的高阶,这表明人耳朵无法感知结核病和COVID-19之间的差异。这种类型的咳嗽音频分类是非接触,具有成本效益的,并且可以轻松地部署在智能手机上,因此它可以成为TB和COVID-19筛查的绝佳工具。
translated by 谷歌翻译