机器学习技术的兴起激发了电子设计自动化(EDA)中应用的繁荣,有助于提高芯片设计中的自动化程度。然而,手动制作的机器学习模型需要广泛的人类专业知识和巨大的工程努力。在这项工作中,我们利用神经结构搜索(NAS)来自动开发高质量的神经架构进行可排卵预测,这有助于引导细胞放置到可路由解决方案。我们的搜索方法支持各种操作和高度灵活的连接,导致架构与所有先前的人工制作模型显着不同。大型数据集上的实验结果表明,我们的自动生成神经架构明显优于多个代表手动制作的解决方案。与手动制作型号的最佳案例相比,NAS产生的模型达到了5.85%的kendall的$ \ tau $,以预测DRC违规的网数和ROC曲线(ROC-AUC)在DRC热点检测下的2.12%面积。此外,与人工制作的模型相比,易于花数周开发,我们的高效NAS方法只需0.3天即可完成整个自动搜索过程。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译
深层神经网络(DNN)是通过依次执行线性和非线性过程产生的。使用线性和非线性程序的组合对于生成足够深的特征空间至关重要。大多数非线性运算符是激活函数或合并函数的推导。数学形态是数学的一个分支,为各种图像处理问题提供了非线性操作员。我们调查了将这些操作集成到本文端到端深度学习框架中的实用性。 DNN旨在获得特定工作的现实代表。形态运算符给出拓扑描述符,以传达有关图像中描述的物体形状的显着信息。我们提出了一种基于元学习的方法,将形态算子纳入DNN。博学的结构展示了我们的新型形态操作如何显着提高各种任务(包括图片分类和边缘检测)的DNN性能。
translated by 谷歌翻译
The interaction and dimension of points are two important axes in designing point operators to serve hierarchical 3D models. Yet, these two axes are heterogeneous and challenging to fully explore. Existing works craft point operator under a single axis and reuse the crafted operator in all parts of 3D models. This overlooks the opportunity to better combine point interactions and dimensions by exploiting varying geometry/density of 3D point clouds. In this work, we establish PIDS, a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data. We establish a large search space to jointly consider versatile point interactions and point dimensions. This supports point operators with various geometry/density considerations. The enlarged search space with heterogeneous search components calls for a better ranking of candidate models. To achieve this, we improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS), and enhance the quality of prediction by assigning unique encoding to heterogeneous search components based on their priors. We thoroughly evaluate the networks crafted by PIDS on two semantic segmentation benchmarks, showing ~1% mIOU improvement on SemanticKITTI and S3DIS over state-of-the-art 3D models.
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
高光谱图像(HSI)分类一直是决定的热门话题,因为高光谱图像具有丰富的空间和光谱信息,并为区分不同的土地覆盖物体提供了有力的基础。从深度学习技术的发展中受益,基于深度学习的HSI分类方法已实现了有希望的表现。最近,已经提出了一些用于HSI分类的神经架构搜索(NAS)算法,这将HSI分类的准确性进一步提高到了新的水平。在本文中,NAS和变压器首次合并用于处理HSI分类任务。与以前的工作相比,提出的方法有两个主要差异。首先,我们重新访问了先前的HSI分类NAS方法中设计的搜索空间,并提出了一个新型的混合搜索空间,该搜索空间由空间主导的细胞和频谱主导的单元组成。与以前的工作中提出的搜索空间相比,所提出的混合搜索空间与HSI数据的特征更加一致,即HSIS具有相对较低的空间分辨率和非常高的光谱分辨率。其次,为了进一步提高分类准确性,我们尝试将新兴变压器模块移植到自动设计的卷积神经网络(CNN)上,以将全局信息添加到CNN学到的局部区域的特征中。三个公共HSI数据集的实验结果表明,所提出的方法的性能要比比较方法更好,包括手动设计的网络和基于NAS的HSI分类方法。特别是在最近被捕获的休斯顿大学数据集中,总体准确性提高了近6个百分点。代码可在以下网址获得:https://github.com/cecilia-xue/hyt-nas。
translated by 谷歌翻译
语义细分是计算机视觉中的一个流行研究主题,并且在其上做出了许多努力,结果令人印象深刻。在本文中,我们打算搜索可以实时运行此问题的最佳网络结构。为了实现这一目标,我们共同搜索深度,通道,扩张速率和特征空间分辨率,从而导致搜索空间约为2.78*10^324可能的选择。为了处理如此大的搜索空间,我们利用差异架构搜索方法。但是,需要离散地使用使用现有差异方法搜索的体系结构参数,这会导致差异方法找到的架构参数与其离散版本作为体系结构搜索的最终解决方案之间的离散差距。因此,我们从解决方案空间正则化的创新角度来缓解离散差距的问题。具体而言,首先提出了新型的解决方案空间正则化(SSR)损失,以有效鼓励超级网络收敛到其离散。然后,提出了一种新的分层和渐进式解决方案空间缩小方法,以进一步实现较高的搜索效率。此外,我们从理论上表明,SSR损失的优化等同于L_0-NORM正则化,这说明了改善的搜索评估差距。综合实验表明,提出的搜索方案可以有效地找到最佳的网络结构,该结构具有较小的模型大小(1 m)的分割非常快的速度(175 fps),同时保持可比较的精度。
translated by 谷歌翻译
Current state-of-the-art convolutional architectures for object detection are manually designed. Here we aim to learn a better architecture of feature pyramid network for object detection. We adopt Neural Architecture Search and discover a new feature pyramid architecture in a novel scalable search space covering all cross-scale connections. The discovered architecture, named NAS-FPN, consists of a combination of top-down and bottom-up connections to fuse features across scales. NAS-FPN, combined with various backbone models in the RetinaNet framework, achieves better accuracy and latency tradeoff compared to state-ofthe-art object detection models. NAS-FPN improves mobile detection accuracy by 2 AP compared to state-of-the-art SS-DLite with MobileNetV2 model in [32] and achieves 48.3 AP which surpasses Mask R-CNN [10] detection accuracy with less computation time.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
神经体系结构搜索(NAS)可以自动为深神经网络(DNN)设计架构,并已成为当前机器学习社区中最热门的研究主题之一。但是,NAS通常在计算上很昂贵,因为在搜索过程中需要培训大量DNN。绩效预测因素可以通过直接预测DNN的性能来大大减轻NAS的过失成本。但是,构建令人满意的性能预测能力很大程度上取决于足够的训练有素的DNN体系结构,在大多数情况下很难获得。为了解决这个关键问题,我们在本文中提出了一种名为Giaug的有效的DNN体系结构增强方法。具体而言,我们首先提出了一种基于图同构的机制,其优点是有效地生成$ \ boldsymbol n $(即$ \ boldsymbol n!$)的阶乘,对具有$ \ boldsymbol n $ n $ n $ n $ \ boldsymbol n $的单个体系结构进行了带注释的体系结构节点。此外,我们还设计了一种通用方法,将体系结构编码为适合大多数预测模型的形式。结果,可以通过各种基于性能预测因子的NAS算法灵活地利用Giaug。我们在中小型,中,大规模搜索空间上对CIFAR-10和Imagenet基准数据集进行了广泛的实验。实验表明,Giaug可以显着提高大多数最先进的同伴预测因子的性能。此外,与最先进的NAS算法相比,Giaug最多可以在ImageNet上节省三级计算成本。
translated by 谷歌翻译
功能提取器在文本识别(TR)中起着至关重要的作用,但是由于昂贵的手动调整,自定义其体系结构的探索相对较少。在这项工作中,受神经体系结构搜索(NAS)的成功启发,我们建议搜索合适的功能提取器。我们通过探索具有良好功能提取器的原理来设计特定于域的搜索空间。该空间包括用于空间模型的3D结构空间和顺序模型的基于转换的空间。由于该空间是巨大且结构复杂的,因此无法应用现有的NAS算法。我们提出了一种两阶段算法,以有效地在空间中进行搜索。在第一阶段,我们将空间切成几个块,并借助辅助头逐步训练每个块。我们将延迟约束引入第二阶段,并通过自然梯度下降从受过训练的超级网络搜索子网络。在实验中,进行了一系列消融研究,以更好地了解设计的空间,搜索算法和搜索架构。我们还将所提出的方法与手写和场景TR任务上的各种最新方法进行了比较。广泛的结果表明,我们的方法可以以较小的延迟获得更好的识别性能。
translated by 谷歌翻译
由于物体形状和图案(例如器官或肿瘤)的高可变性,3D医学图像的语义分割是一个具有挑战性的任务。鉴于最近在医学图像分割中深入学习的成功,已经引入了神经结构搜索(NAS)以查找高性能3D分段网络架构。但是,由于3D数据的大量计算要求和架构搜索的离散优化性质,之前的NAS方法需要很长的搜索时间或必要的连续放松,并且通常导致次优网络架构。虽然单次NAS可能会解决这些缺点,但其在分段域中的应用尚未在膨胀的多尺度多路径搜索空间中进行很好地研究。为了为医学图像分割启用一次性NAS,我们的方法名为Hypersegnas,介绍了通过结合建筑拓扑信息来帮助超级培训培训。在培训超级网络培训并在架构搜索期间引入开销时,可以删除这种超空头。我们表明,与以前的最先进的(SOTA)分割网络相比,Hypersegnas产生更好的表现和更直观的架构;此外,它可以在不同的计算限制下快速准确地找到良好的体系结构候选者。我们的方法是在医疗细分Decovaton(MSD)挑战的公共数据集上评估,并实现了SOTA表演。
translated by 谷歌翻译
单图像人群计数是一个充满挑战的计算机视觉问题,在公共安全,城市规划,交通管理等方面进行了广泛的应用。随着深度学习技术的最新发展,近年来,人群的数量引起了很多关注并取得了巨大的成功。这项调查是为了通过系统审查和总结该地区的200多件作品来提供有关基于深度学习的人群计数技术的最新进展的全面摘要。我们的目标是提供最新的评论。在最近的方法中,并在该领域教育新研究人员的设计原理和权衡。在介绍了公开可用的数据集和评估指标之后,我们通过对三个主要的设计模块进行了详细比较来回顾最近的进展:深度神经网络设计,损失功能和监督信号。我们使用公共数据集和评估指标研究和比较方法。我们以一些未来的指示结束了调查。
translated by 谷歌翻译
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and errorprone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
translated by 谷歌翻译
关于神经体系结构搜索(NAS)的现有研究主要集中于有效地搜索具有更好性能的网络体系结构。几乎没有取得进展,以系统地了解NAS搜索的架构是否对隐私攻击是强大的,而丰富的工作已经表明,人类设计的架构容易受到隐私攻击。在本文中,我们填补了这一空白,并系统地衡量了NAS体系结构的隐私风险。利用我们的测量研究中的见解,我们进一步探索了基于细胞的NAS架构的细胞模式,并评估细胞模式如何影响NAS搜索架构的隐私风险。通过广泛的实验,我们阐明了如何针对隐私攻击设计强大的NAS体系结构,还提供了一种通用方法,以了解NAS搜索的体系结构与其他隐私风险之间的隐藏相关性。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
深度神经网络的兴起为优化推荐系统提供了重要的驱动力。但是,推荐系统的成功在于精致的建筑制造,因此呼吁神经建筑搜索(NAS)进一步改善其建模。我们提出了NASREC,它是一种训练单个超级网的范式,并通过重量共享有效地产生丰富的模型/子构造。为了克服数据多模式和体系结构异质性挑战,NASREC建立了一个大型的超级网(即搜索空间),以搜索完整的体系结构,而SuperNet结合了多功能操作员的选择和密集的连接性选择,并使人类的密集连接性最小化。 Nasrec的规模和异质性在搜索中构成了挑战,例如训练效率低下,操作员不平衡和降级等级相关性。我们通过提出单操作员任何连接采样,操作员平衡互动模块和训练后微调来应对这些挑战。我们对三个点击率(CTR)预测基准测试的结果表明,NASREC可以胜过手动设计的模型和现有的NAS方法,从而实现最先进的性能。
translated by 谷歌翻译
现有的光流估计器通常采用通常用于图像分类的网络体系结构作为提取人均功能的编码器。但是,由于任务之间的自然差异,用于图像分类的架构可能是最佳的流量估计。为了解决此问题,我们建议一种名为Falownas的神经体系结构搜索方法,以自动找到用于流估计任务的更好的编码器体系结构。我们首先设计一个合适的搜索空间,包括各种卷积运算符,并构建一个体重共享的超级网络,以有效评估候选体系结构。然后,为了更好地训练超级网络,我们提出了特征对齐蒸馏,该蒸馏利用训练有素的流量估计器来指导超级网络的训练。最后,利用资源约束的进化算法找到最佳体系结构(即子网络)。实验结果表明,从超级网络继承的权重的发现的结构达到了4.67 \%f1-able kitti上的误差,这是RAFT基线的8.4 \%降低,超过了先进的手工制作的型号GMA和AGFlow,同时降低模型的复杂性和延迟。源代码和训练有素的模型将在https://github.com/vdigpku/flownas中发布。
translated by 谷歌翻译