语义细分是计算机视觉中的一个流行研究主题,并且在其上做出了许多努力,结果令人印象深刻。在本文中,我们打算搜索可以实时运行此问题的最佳网络结构。为了实现这一目标,我们共同搜索深度,通道,扩张速率和特征空间分辨率,从而导致搜索空间约为2.78*10^324可能的选择。为了处理如此大的搜索空间,我们利用差异架构搜索方法。但是,需要离散地使用使用现有差异方法搜索的体系结构参数,这会导致差异方法找到的架构参数与其离散版本作为体系结构搜索的最终解决方案之间的离散差距。因此,我们从解决方案空间正则化的创新角度来缓解离散差距的问题。具体而言,首先提出了新型的解决方案空间正则化(SSR)损失,以有效鼓励超级网络收敛到其离散。然后,提出了一种新的分层和渐进式解决方案空间缩小方法,以进一步实现较高的搜索效率。此外,我们从理论上表明,SSR损失的优化等同于L_0-NORM正则化,这说明了改善的搜索评估差距。综合实验表明,提出的搜索方案可以有效地找到最佳的网络结构,该结构具有较小的模型大小(1 m)的分割非常快的速度(175 fps),同时保持可比较的精度。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译
在本文中,我们专注于探索有效的方法,以更快,准确和域的不可知性语义分割。受到相邻视频帧之间运动对齐的光流的启发,我们提出了一个流对齐模块(FAM),以了解相邻级别的特征映射之间的\ textit {语义流},并将高级特征广播到高分辨率特征有效地,有效地有效。 。此外,将我们的FAM与共同特征的金字塔结构集成在一起,甚至在轻量重量骨干网络(例如Resnet-18和DFNET)上也表现出优于其他实时方法的性能。然后,为了进一步加快推理过程,我们还提出了一个新型的封闭式双流对齐模块,以直接对齐高分辨率特征图和低分辨率特征图,在该图中我们将改进版本网络称为SFNET-LITE。广泛的实验是在几个具有挑战性的数据集上进行的,结果显示了SFNET和SFNET-LITE的有效性。特别是,建议的SFNET-LITE系列在使用RESNET-18主链和78.8 MIOU以120 fps运行的情况下,使用RTX-3090上的STDC主链在120 fps运行时,在60 fps运行时达到80.1 miou。此外,我们将四个具有挑战性的驾驶数据集(即CityScapes,Mapillary,IDD和BDD)统一到一个大数据集中,我们将其命名为Unified Drive细分(UDS)数据集。它包含不同的域和样式信息。我们基准了UDS上的几项代表性作品。 SFNET和SFNET-LITE仍然可以在UDS上取得最佳的速度和准确性权衡,这在如此新的挑战性环境中是强大的基准。所有代码和模型均可在https://github.com/lxtgh/sfsegnets上公开获得。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
Recently, Neural Architecture Search (NAS) has successfully identified neural network architectures that exceed human designed ones on large-scale image classification. In this paper, we study NAS for semantic image segmentation. Existing works often focus on searching the repeatable cell structure, while hand-designing the outer network structure that controls the spatial resolution changes. This choice simplifies the search space, but becomes increasingly problematic for dense image prediction which exhibits a lot more network level architectural variations. Therefore, we propose to search the network level structure in addition to the cell level structure, which forms a hierarchical architecture search space. We present a network level search space that includes many popular designs, and develop a formulation that allows efficient gradient-based architecture search (3 P100 GPU days on Cityscapes images). We demonstrate the effectiveness of the proposed method on the challenging Cityscapes, PASCAL VOC 2012, and ADE20K datasets. Auto-DeepLab, our architecture searched specifically for semantic image segmentation, attains state-of-the-art performance without any ImageNet pretraining. 1 * Work done while an intern at Google.
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译
多尺度学习框架已被视为一种能够提高语义分割的能力类别。然而,这个问题并不是微不足道的,尤其是对于现实世界的部署,通常需要高效率推理潜伏期。在本文中,我们彻底分析了卷积块的设计(卷积的类型和卷积中的频道数量),以及跨多个尺度的相互作用方式,所有这些都是从轻量级的语义分割的角度来看。通过这样的深入比较,我们综述了三个原则,因此设计了轻巧且逐渐估计的网络(LPS-NET),这些网络以贪婪的方式在新颖地扩展了网络复杂性。从技术上讲,LPS-NET首先利用了建立小型网络的原则。然后,LPS-NET通过扩展单个维度(卷积块的数量,通道数量或输入分辨率)来逐步扩展到较大网络,以实现最佳的速度/准确性交易。在三个数据集上进行的广泛实验始终证明了LPS-NET优于几种有效的语义分割方法。更值得注意的是,我们的LPS-NET在CityScapes测试套装上达到73.4%MIOU,NVIDIA GTX 1080TI的速度为413.5fps,导致绩效提高1.5%,对抗最高的速度为65% - ART STDC。代码可在\ url {https://github.com/yihengzhang-cv/lps-net}中获得。
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
Real-time semantic segmentation has played an important role in intelligent vehicle scenarios. Recently, numerous networks have incorporated information from multi-size receptive fields to facilitate feature extraction in real-time semantic segmentation tasks. However, these methods preferentially adopt massive receptive fields to elicit more contextual information, which may result in inefficient feature extraction. We believe that the elaborated receptive fields are crucial, considering the demand for efficient feature extraction in real-time tasks. Therefore, we propose an effective and efficient architecture termed Dilation-wise Residual segmentation (DWRSeg), which possesses different sets of receptive field sizes within different stages. The architecture involves (i) a Dilation-wise Residual (DWR) module for extracting features based on different scales of receptive fields in the high level of the network; (ii) a Simple Inverted Residual (SIR) module that uses an inverted bottleneck structure to extract features from the low stage; and (iii) a simple fully convolutional network (FCN)-like decoder for aggregating multiscale feature maps to generate the prediction. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without using pretraining or resorting to any training trick, we achieve 72.7% mIoU on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods. The code and trained models are publicly available.
translated by 谷歌翻译
准确的语义分割模型通常需要大量的计算资源,从而抑制其在实际应用中的使用。最近的作品依靠精心制作的轻质模型来快速推断。但是,这些模型不能灵活地适应不同的准确性和效率要求。在本文中,我们提出了一种简单但有效的微小语义细分(SLIMSEG)方法,该方法可以在推理期间以不同的能力执行,具体取决于所需的准确性效率 - 折衷。更具体地说,我们在训练过程中采用逐步向下知识蒸馏采用参数化通道。观察到每个子模型的分割结果之间的差异主要在语义边界附近,我们引入了额外的边界指导语义分割损失,以进一步提高每个子模型的性能。我们表明,我们提出的具有各种主流网络的Slimseg可以产生灵活的模型,从而使计算成本的动态调整和比独立模型更好。关于语义分割基准,城市景观和Camvid的广泛实验证明了我们框架的概括能力。
translated by 谷歌翻译
现有的神经结构搜索算法主要在具有短距离连接的搜索空间上。我们争辩说,这种设计虽然安全稳定,障碍搜索算法从探索更复杂的情景。在本文中,我们在具有长距离连接的复杂搜索空间上构建搜索算法,并显示现有的权重共享搜索算法由于存在\ TextBF {交织连接}而大部分失败。基于观察,我们介绍了一个名为\ textbf {if-nas}的简单且有效的算法,在那里我们在搜索过程中执行定期采样策略来构建不同的子网,避免在任何中的交织连接出现。在所提出的搜索空间中,IF-NAS优于随机采样和先前的重量共享搜索算法,通过显着的余量。 IF-NAS还推广到微单元的空间,这些空间更容易。我们的研究强调了宏观结构的重要性,我们期待沿着这个方向进一步努力。
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
人们普遍认为,对于准确的语义细分,必须使用昂贵的操作(例如,非常卷积)结合使用昂贵的操作(例如非常卷积),从而导致缓慢的速度和大量的内存使用。在本文中,我们质疑这种信念,并证明既不需要高度的内部决议也不是必需的卷积。我们的直觉是,尽管分割是一个每像素的密集预测任务,但每个像素的语义通常都取决于附近的邻居和遥远的环境。因此,更强大的多尺度功能融合网络起着至关重要的作用。在此直觉之后,我们重新访问常规的多尺度特征空间(通常限制为P5),并将其扩展到更丰富的空间,最小的P9,其中最小的功能仅为输入大小的1/512,因此具有很大的功能接受场。为了处理如此丰富的功能空间,我们利用最近的BIFPN融合了多尺度功能。基于这些见解,我们开发了一个简化的分割模型,称为ESEG,该模型既没有内部分辨率高,也没有昂贵的严重卷积。也许令人惊讶的是,与多个数据集相比,我们的简单方法可以以比以前的艺术更快地实现更高的准确性。在实时设置中,ESEG-Lite-S在189 fps的CityScapes [12]上达到76.0%MIOU,表现优于更快的[9](73.1%MIOU时为170 fps)。我们的ESEG-LITE-L以79 fps的速度运行,达到80.1%MIOU,在很大程度上缩小了实时和高性能分割模型之间的差距。
translated by 谷歌翻译
模型的时间/空间接受场在顺序/空间任务中起重要作用。大型接受场有助于长期关系,而小型接受场有助于捕获当地的细节。现有方法构建具有手工设计的接收场的模型。我们可以有效地搜索接收场合组合以取代手工设计的模式吗?为了回答这个问题,我们建议通过全球到本地搜索方案找到更好的接受现场组合。我们的搜索方案利用了全局搜索以找到粗糙的组合和本地搜索,以进一步获得精致的接收场组合。全球搜索发现除了人类设计的模式以外的其他可能的粗糙组合。除全球搜索外,我们提出了一种期望引导的迭代局部搜索方案,以有效地完善组合。我们的RF-NEXT模型,将接受现场搜索插入各种模型,提高许多任务的性能,例如时间动作分割,对象检测,实例分割和语音综合。源代码可在http://mmcheng.net/rfnext上公开获得。
translated by 谷歌翻译
神经结构搜索(NAS)已被广泛采用设计准确,高效的图像分类模型。但是,将NAS应用于新的计算机愿景任务仍然需要大量的努力。这是因为1)以前的NAS研究已经过度优先考虑图像分类,同时在很大程度上忽略了其他任务; 2)许多NAS工作侧重于优化特定于任务特定的组件,这些组件不能有利地转移到其他任务; 3)现有的NAS方法通常被设计为“Proxyless”,需要大量努力与每个新任务的培训管道集成。为了解决这些挑战,我们提出了FBNetv5,这是一个NAS框架,可以在各种视觉任务中寻找神经架构,以降低计算成本和人力努力。具体而言,我们设计1)一个简单但包容性和可转换的搜索空间; 2)用目标任务培训管道解开的多址搜索过程; 3)一种算法,用于同时搜索具有计算成本不可知的多个任务的架构到任务数。我们评估所提出的FBNetv5目标三个基本视觉任务 - 图像分类,对象检测和语义分割。 FBNETV5在单一搜索中搜索的模型在所有三个任务中都表现优于先前的议定书 - 现有技术:图像分类(例如,与FBNetv3相比,在与FBNetv3相比的同一拖鞋下的1 + 1.3%Imageet Top-1精度。 (例如,+ 1.8%较高的Ade20k Val。Miou比SegFormer为3.6倍的拖鞋),对象检测(例如,+ 1.1%Coco Val。与yolox相比,拖鞋的1.2倍的地图。
translated by 谷歌翻译
可微分的架构搜索逐渐成为神经结构中的主流研究主题,以实现与早期NAS(基于EA的RL的)方法相比提高效率的能力。最近的可分辨率NAS还旨在进一步提高搜索效率,降低GPU记忆消耗,并解决“深度间隙”问题。然而,这些方法不再能够解决非微弱目标,更不用说多目标,例如性能,鲁棒性,效率和其他指标。我们提出了一个端到端的架构搜索框架,朝向非微弱的目标TND-NAS,具有在多目标NAs(MNA)中的不同NAS框架中的高效率的优点和兼容性的兼容性(MNA)。在可分辨率的NAS框架下,随着搜索空间的连续放松,TND-NAS具有在离散空间中优化的架构参数($ \ alpha $),同时通过$ \ alpha $逐步缩小超缩小的搜索策略。我们的代表性实验需要两个目标(参数,准确性),例如,我们在CIFAR10上实现了一系列高性能紧凑型架构(1.09米/ 3.3%,2.4M / 2.95%,9.57M / 2.54%)和CIFAR100(2.46 M / 18.3%,5.46 / 16.73%,12.88 / 15.20%)数据集。有利地,在现实世界的情景下(资源受限,平台专用),TND-NA可以方便地达到Pareto-Optimal解决方案。
translated by 谷歌翻译
在本文中,我们通过利用视觉数据中的空间稀疏性提出了一种新的模型加速方法。我们观察到,视觉变压器中的最终预测仅基于最有用的令牌的子集,这足以使图像识别。基于此观察,我们提出了一个动态的令牌稀疏框架,以根据加速视觉变压器的输入逐渐和动态地修剪冗余令牌。具体而言,我们设计了一个轻量级预测模块,以估计给定当前功能的每个令牌的重要性得分。该模块被添加到不同的层中以层次修剪冗余令牌。尽管该框架的启发是我们观察到视觉变压器中稀疏注意力的启发,但我们发现自适应和不对称计算的想法可能是加速各种体系结构的一般解决方案。我们将我们的方法扩展到包括CNN和分层视觉变压器在内的层次模型,以及更复杂的密集预测任务,这些任务需要通过制定更通用的动态空间稀疏框架,并具有渐进性的稀疏性和非对称性计算,用于不同空间位置。通过将轻质快速路径应用于少量的特征,并使用更具表现力的慢速路径到更重要的位置,我们可以维护特征地图的结构,同时大大减少整体计算。广泛的实验证明了我们框架对各种现代体系结构和不同视觉识别任务的有效性。我们的结果清楚地表明,动态空间稀疏为模型加速提供了一个新的,更有效的维度。代码可从https://github.com/raoyongming/dynamicvit获得
translated by 谷歌翻译
视觉变形金刚(VITS)引起了对计算机视觉任务的卓越性能的关注。为解决单级低分辨率表示的限制,先前的工作适用于具有分层体系结构的高分辨率密集预测任务,以生成金字塔功能。然而,考虑到其分类的顺序拓扑,仍然对VITS探索多种表达学习。在这项工作中提高具有更多能力的VITS来学习语义和空间精确的多尺度表示,我们展示了高分辨率多分支架构的高分辨率多分支架构,带有视觉变压器,称为HRVIT,推动静脉前沿预测任务到新级别。我们探索异构分支设计,降低线性层中的冗余,并增加模型非线性以平衡模型性能和硬件效率。拟议的HRVIT在ADE20K上达到50.20%的Miou,83.16%Miou,用于语义细分任务,超过最先进的麻省理工学院和克斯犬,平均+1.78 miou改善,参数减少28%和21%拖鞋,展示HRVIT作为强大视力骨架的潜力。
translated by 谷歌翻译