多视图学习是一个学习问题,它利用对象的各种表示来挖掘宝贵的知识并提高学习算法的性能,并且多视图学习的重要方向之一是子空间学习。正如我们所知,自动编码器是深度学习的方法,它可以通过重建输入来学习原始数据的潜在特征,并基于这一点,我们提出了一种名为基于自动编码器的共训练多视图学习的新算法(ACMVL)利用互补性和一致性,并找到多个视图的联合潜在特征表示。该算法有两个阶段,首先是培训每个视图的自动编码器,第二阶段是训练监督网络。有趣的是,两个阶段部分地分享权重,并通过共同培训过程互相帮助。根据实验结果,我们可以学习良好的潜在特征表示,并且每个视图的自动编码器具有比传统的自动编码器更强大的重建能力。
translated by 谷歌翻译
在本文中,我们提出了一种新颖的细节多视图深度子空间网(AMVDSN),其深入探讨了多个视图中的一致性和特定信息,并通过考虑每个视图通过注意机制获得的动态贡献来熔化它们。与大多数多视图子空间学习方法不同,它们直接重建原始数据的数据点,或者在深层或浅层空间中学习表示时仅考虑一致性或互补性,我们提出的方法旨在查找明确认为共识和观点的联合潜在表示 - 多个视图之间的特定信息,然后对学习的联合潜在表示执行子空间群集。基础,不同的视图与表示学习有不同的贡献,我们引入了关注机制来导出每个视图的动态权重,这比以前的融合方法更好多视图子空间群集的领域。所提出的算法是直观的,并且由于神经网络框架,通过使用随机梯度下降(SGD)可以容易地优化,其与传统的子空间聚类方法相比,这也提供了强大的非线性表征能力。七个现实世界数据集的实验结果表明了我们提出的算法对某些最先进的子空间学习方法的有效性。
translated by 谷歌翻译
多视图学习尝试通过利用多视图数据之间的共识和/或互补性来生成具有更好性能的模型。然而,就互补性而言,大多数现有方法只能找到单一互补性而不是多样性的互补信息。在本文中,为了同时利用互补性和一致性,对多视图代表学习的互相促进互补性的深度学习的潜力,提出了一种新的监督多视图表示学习算法,称为自我关注具有多样性促进互补性的多视图网络(SAMVDPC)通过一组编码器利用一致性,使用自我关注查找需要多样性的互补信息。在八个现实世界数据集上进行的广泛实验已经证明了我们所提出的方法的有效性,并在几种基线方法上显示出优于的优势,只考虑单个互补信息。
translated by 谷歌翻译
多视图学习通过LEVERAG-ING-ING-ING相同对象之间的关系来完成分类的任务目标。大多数现有方法通常关注多个视图之间的一致性和互补性。但并非所有这些信息都非常有用于分类任务。相反,它是扮演重要作用的具体辨别信息。钟张等。通过联合非负矩阵分组探讨不同视图中的共同视图中存在的判别和非歧视信息。在本文中,我们通过使用跨熵损耗函数来改善该算法来改善目标函数更好。最后,我们在相同数据集上的原始实施更好的分类效果,并在许多最先进的算法上显示其优越性。
translated by 谷歌翻译
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields. However, most previous works assumed that each view is complete and aligned. This leads to an inevitable deterioration in their performance when encountering practical problems such as missing or unaligned views. To address the challenge of representation learning on partially aligned multi-view data, we propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations. Compared with current approaches, the proposed method has the following merits: (1) our model is an end-to-end framework that simultaneously performs view-specific representation learning via view-specific autoencoders and cluster-level data aligning by combining multi-view information with the cross-view graph contrastive learning; (2) it is easy to apply our model to explore information from three or more modalities/sources as the cross-view graph contrastive learning is devised. Extensive experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
translated by 谷歌翻译
多视图学习可以更全面地涵盖数据样本的所有功能,因此多视图学习引起了广泛的关注。传统的子空间聚类方法,如稀疏子空间群集(SSC)和低排名子空间群集(LRSC),为单个视图簇聚集亲和矩阵,从而忽略视图之间的融合问题。在我们的文章中,我们提出了一种基于注意力和AutoEncoder(MSALAA)的新的多视图子空间自适应学习。该方法组合了深度自动统计器和用于对齐各种视图的自我表示的方法,以在多视图低级稀疏子空间聚类(MLRSSC)中,这不仅可以将能力提高到非线性拟合,而且也可以满足多视图学习的一致性与互补原则。我们经验遵守六个现实生活数据集的现有基线方法的重大改进。
translated by 谷歌翻译
深度多视图聚类方法取得了显着的性能。然而,所有这些都未能考虑在多视图样本上的难度标签(训练样本的地面真理的不确定性),这可能导致非群体聚类网络在训练过程中陷入糟糕的本地Optima;更糟糕的是,多视图样本的难度标签始终不一致,但事实使其更具挑战性。在本文中,我们提出了一种新的深对抗性不一致的认知采样(DACE)方法,用于多视图逐行子空间聚类。提出了多视图二进制分类(简单或困难)丢失和特征相似性损失,共同学习二进制分类器和深度一致的特征嵌入网络,在多维型一致样本的难度标签上过度的对手Minimax游戏。我们开发了一种多视图认知采样策略,可从易于困难的多视图聚类网络训练中选择输入样本。然而,容易和难以样品的分布混合在一起,因此实现目标并不差。要解决它,我们可以定义具有理论保证的采样概率。基于此,一种金段机制进一步设计用于生成样本集边界,以通过栅极单元逐渐选择具有变化难度标签的样本,该门单元用于共同学习多视图常见渐进子空间和聚类网络以进行更高效聚类。四个现实世界数据集的实验结果证明了守护处的优越性。
translated by 谷歌翻译
不完整的多视图聚类旨在通过使用来自多种模式的数据来增强聚类性能。尽管已经提出了几种研究此问题的方法,但以下缺点仍然存在:1)很难学习潜在的互补性但不使用标签信息而保持一致性的潜在表示; 2)因此,当完整的数据稀缺时,在不完整的数据中未能充分利用不完整数据中的隐藏信息会导致次优群集性能。在本文中,我们提出了与生成对抗网络(CIMIC-GAN)的对比度不完整的多视图图像聚类,该网络使用GAN填充不完整的数据并使用双对比度学习来学习完整和不完整的数据的一致性。更具体地说,考虑到多种方式之间的多样性和互补信息,我们将完整和不完整数据的自动编码表示为双对比度学习,以实现学习一致性。将gan集成到自动编码过程中不仅可以充分利用不完整数据的新功能,而且可以在存在高数据缺失率的情况下更好地概括该模型。在\ textColor {black} {四}广泛使用的数据集上进行的实验表明,cimic-gan优于最先进的不完整的多视图聚类方法。
translated by 谷歌翻译
基于图形的多视图聚类,旨在跨多种视图获取数据分区,近年来接受了相当大的关注。虽然已经为基于图形的多视图群集进行了巨大努力,但它对各种视图融合特征仍然是一个挑战,以学习聚类的常见表示。在本文中,我们提出了一种新的一致多曲线图嵌入聚类框架(CMGEC)。具体地,设计了一种多图自动编码器(M-GAE),用于使用多图注意融合编码器灵活地编码多视图数据的互补信息。为了引导所学过的公共表示维护每个视图中相邻特征的相似性,引入了多视图相互信息最大化模块(MMIM)。此外,设计了一个图形融合网络(GFN),以探讨来自不同视图的图表之间的关系,并提供M-GAE所需的常见共识图。通过联合训练这些模型,可以获得共同的潜在表示,其从多个视图中编码更多互补信息,并更全面地描绘数据。三种类型的多视图数据集的实验表明CMGEC优于最先进的聚类方法。
translated by 谷歌翻译
由于多源信息集成的能力,多视图聚类吸引了很多关注。尽管在过去几十年中已经提出了许多高级方法,但其中大多数通常忽略了弱监督信息的重要性,并且无法保留多种视图的特征属性,从而导致聚类性能不令人满意。为了解决这些问题,在本文中,我们提出了一种新颖的深度观看半监督聚类(DMSC)方法,该方法在网络填充过程中共同优化了三种损失,包括多视图集群损失,半监督的成对约束损失损失和多个自动编码器重建损失。具体而言,基于KL差异的多视图聚类损失被施加在多视图数据的共同表示上,以同时执行异质特征优化,多视图加权和聚类预测。然后,我们通过创新建议将成对约束集成到多视图聚类的过程中,通过执行所学到的必须链接样本的多视图表示(不能链接样本)是相似的(不同的),以便形成的聚类结构可以可以更可信。此外,与现有的竞争对手不同,该竞争对手仅保留网络填充期间每个异质分支的编码器,我们进一步建议调整完整的自动编码器框架,其中包含编码器和解码器。通过这种方式,可以缓解特定视图和视图共享特征空间的严重腐败问题,从而使整个培训程序更加稳定。通过在八个流行图像数据集上进行的全面实验,我们证明了我们提出的方法的性能要比最先进的多视图和单视竞争对手更好。
translated by 谷歌翻译
近年来,多视图学习迅速发展。尽管许多先前的研究都认为每个实例都出现在所有视图中,但在现实世界应用程序中很常见,从某些视图中丢失实例,从而导致多视图数据不完整。为了解决这个问题,我们提出了一个新型潜在的异质图网络(LHGN),以实现不完整的多视图学习,该学习旨在以灵活的方式尽可能充分地使用多个不完整的视图。通过学习统一的潜在代表,隐含地实现了不同观点之间一致性和互补性之间的权衡。为了探索样本与潜在表示之间的复杂关系,首次提出了邻域约束和视图约束,以构建异质图。最后,为了避免训练和测试阶段之间的任何不一致之处,基于图形学习的分类任务应用了转导学习技术。对现实世界数据集的广泛实验结果证明了我们模型对现有最新方法的有效性。
translated by 谷歌翻译
一致性和互补性是增强多视图聚类(MVC)的两种关键要素。最近,随着流行的对比学习的引入,MVC的观点一致性学习得到了进一步的增强,从而导致了有希望的表现。但是,相比之下,互补性尚未得到足够的关注,除了在功能方面,希尔伯特·施密特独立标准(HSIC)术语(HSIC)术语或通常采用独立的编码器网络以捕获特定视图信息。这促使我们从包括功能,视图标签和对比方面在内的多个方面全面地重新考虑对观点的互补学习,同时保持视图一致性。我们从经验上发现,所有方面都有助于互补学习,尤其是视图标签的方面,通常被现有方法忽略了。基于此,我们开发了一个小说\下划线{m} ultifacet \ usewissline {c} omplementarity学习框架\下划线{m} uldi- \ usepline {v} iew \ usew \ usew suespline {c} lustering(mcmvc),其中融合了多层配置配置。信息,尤其是明确嵌入视图标签信息的信息。据我们所知,这是第一次明确使用视图标签来指导视图的互补学习。与SOTA基线相比,MCMVC在$ 5.00 \%$ $ $ 5.00 \%$和$ 7.00 \%$中的平均利润率分别在CALTECH101-20上分别在CalTech101-20上分别取得了显着的进步,分别是三个评估指标。
translated by 谷歌翻译
多视图子空间聚类传统上专注于集成异构特征描述以捕获更高维度信息。一种流行的策略是从不同视图生成常见的子空间,然后应用基于图形的方法来处理群集。但是,这些方法的性能仍然受到两个限制,即多视图融合模式以及融合过程与聚类任务之间的连接。为了解决这些问题,我们通过细粒度图形学习提出了一种新的多视图子空间聚类框架,可以在不同视图之间讲述本地结构之间的一致性,并比以前的重量规则更精细地集成所有视图。与文献中的其他模型不同,引入了点级图正规化和频谱聚类的重新介绍,以执行图形融合并将共享集群结构一起学习在一起。在五个真实数据集上进行了广泛的实验,表明该框架对SOTA算法具有可比性。
translated by 谷歌翻译
近年来,在线增量学习中兴趣增长。然而,这方面存在三个主要挑战。第一个主要困难是概念漂移,即流数据中的概率分布会随着数据到达而改变。第二个重大困难是灾难性的遗忘,即忘记在学习新知识之前学到的东西。我们经常忽略的最后一个是学习潜在的代表。只有良好的潜在表示可以提高模型的预测准确性。我们的研究在此观察中建立并试图克服这些困难。为此,我们提出了一种适应性在线增量学习,用于不断发展数据流(AOL)。我们使用带内存模块的自动编码器,一方面,我们获得了输入的潜在功能,另一方面,根据自动编码器的重建丢失与内存模块,我们可以成功检测存在的存在概念漂移并触发更新机制,调整模型参数及时。此外,我们划分从隐藏层的激活导出的特征,分为两个部分,用于分别提取公共和私有特征。通过这种方法,该模型可以了解新的即将到来的实例的私有功能,但不要忘记我们在过去(共享功能)中学到的内容,这减少了灾难性遗忘的发生。同时,要获取融合特征向量,我们使用自我关注机制来有效地融合提取的特征,这进一步改善了潜在的代表学习。
translated by 谷歌翻译
旨在解决不完整的多视图数据中缺少部分视图的聚类问题的不完整的多视图聚类,近年来受到了越来越多的关注。尽管已经开发了许多方法,但大多数方法要么无法灵活地处理不完整的多视图数据,因此使用任意丢失的视图,或者不考虑视图之间信息失衡的负面因素。此外,某些方法并未完全探索所有不完整视图的局部结构。为了解决这些问题,本文提出了一种简单但有效的方法,称为局部稀疏不完整的多视图聚类(LSIMVC)。与现有方法不同,LSIMVC打算通过优化一个稀疏的正则化和新颖的图形嵌入式多视图矩阵分数模型来从不完整的多视图数据中学习稀疏和结构化的潜在表示。具体而言,在基于矩阵分解的这种新型模型中,引入了基于L1规范的稀疏约束,以获得稀疏的低维单个表示和稀疏共识表示。此外,引入了新的本地图嵌入项以学习结构化共识表示。与现有作品不同,我们的本地图嵌入术语汇总了图形嵌入任务和共识表示任务中的简洁术语。此外,为了减少多视图学习的不平衡因素,将自适应加权学习方案引入LSIMVC。最后,给出了有效的优化策略来解决我们提出的模型的优化问题。在六个不完整的多视图数据库上执行的全面实验结果证明,我们的LSIMVC的性能优于最新的IMC方法。该代码可在https://github.com/justsmart/lsimvc中找到。
translated by 谷歌翻译
Multi-view unsupervised feature selection has been proven to be efficient in reducing the dimensionality of multi-view unlabeled data with high dimensions. The previous methods assume all of the views are complete. However, in real applications, the multi-view data are often incomplete, i.e., some views of instances are missing, which will result in the failure of these methods. Besides, while the data arrive in form of streams, these existing methods will suffer the issues of high storage cost and expensive computation time. To address these issues, we propose an Incremental Incomplete Multi-view Unsupervised Feature Selection method (I$^2$MUFS) on incomplete multi-view streaming data. By jointly considering the consistent and complementary information across different views, I$^2$MUFS embeds the unsupervised feature selection into an extended weighted non-negative matrix factorization model, which can learn a consensus clustering indicator matrix and fuse different latent feature matrices with adaptive view weights. Furthermore, we introduce the incremental leaning mechanisms to develop an alternative iterative algorithm, where the feature selection matrix is incrementally updated, rather than recomputing on the entire updated data from scratch. A series of experiments are conducted to verify the effectiveness of the proposed method by comparing with several state-of-the-art methods. The experimental results demonstrate the effectiveness and efficiency of the proposed method in terms of the clustering metrics and the computational cost.
translated by 谷歌翻译
自我监督的学习(SSL)已成为无需人类注释而产生不变表示的流行方法。但是,通过在输入数据上利用先前的在线转换功能来实现所需的不变表示。结果,每个SSL框架都是针对特定数据类型(例如,视觉数据)定制的,如果将其用于其他数据集类型,则需要进行进一步的修改。另一方面,是一个通用且广泛适用的框架的自动编码器(AE),主要集中于缩小尺寸,不适合学习不变表示。本文提出了一个基于阻止退化解决方案的受限自我标签分配过程的通用SSL框架。具体而言,先前的转换函数被用无监督的对抗训练的训练过程得出,以实现不变表示。通过自我转化机制,可以从相同的输入数据生成成对的增强实例。最后,基于对比度学习的培训目标是通过利用自我标签分配和自我转化机制来设计的。尽管自我转化过程非常通用,但拟议的培训策略的表现优于基于AE结构的大多数最先进的表示方法。为了验证我们的方法的性能,我们对四种类型的数据进行实验,即视觉,音频,文本和质谱数据,并用四个定量指标进行比较。我们的比较结果表明,所提出的方法证明了鲁棒性并成功识别数据集中的模式。
translated by 谷歌翻译
随着大数据在多个高影响应用程序中的出现,我们经常面临复杂异质性的挑战。新收集的数据通常由多种模态组成,并具有多个标签,因此表现出多种类型的异质性的共存。尽管最先进的技术擅长使用足够的标签信息对复杂的异质性进行建模,但是在实际应用中获得的标签信息可能非常昂贵。最近,研究人员通过利用丰富的未标记数据,非常关注对比度学习的出色表现。但是,对比度学习上的现有工作无法解决虚假负面对的问题,即,如果某些“负”对具有相同的标签,则可能具有相似的表示。为了克服这些问题,在本文中,我们提出了一个统一的异质学习框架,该框架结合了加权的无监督对比损失和加权监督的对比损失,以模拟多种类型的异质性。我们首先提供了理论分析,表明在存在假负对的情况下,香草对比度学习损失很容易导致次优的解决方案,而拟议的加权损失可以自动根据学习表示的相似性自动调整重量,从而减轻这种情况以减轻这种情况问题。现实世界数据集的实验结果证明了对多种类型的异质性建模所提出的框架的有效性和效率。
translated by 谷歌翻译
多视图数据通常在数据挖掘应用程序中遇到。从多视图数据中有效提取信息需要特定的聚类方法设计,以适应具有多种视图的数据,这是非平凡且具有挑战性的。在本文中,我们通过利用不同观点的常见和特定信息的双重表示,提出了一种新颖的一步多视图聚类方法。动机源于以下理由:多视图数据不仅包含视图之间的一致知识,还包含每个视图的独特知识。同时,为了使表示学习更具体地针对聚类任务,提出了一个单步学习框架,以整体整合表示表示和聚类分区。在此框架中,表示形式学习和聚类分区相互受益,从而有效地改善了聚类性能。在基准多视图数据集上进行的广泛实验的结果清楚地证明了该方法的优越性。
translated by 谷歌翻译
图像文本聚类(ITC)的目标是通过整合这些异质样品的多模式的互补和一致信息来找到正确的簇。但是,目前的大多数研究都根据理想的前提分析了ITC,即每种模式中的样本都是完整的。但是,在现实情况下,这种推定并不总是有效的。缺少的数据问题使图像文本特征学习性能退化,并最终会影响ITC任务中的概括能力。尽管已经提出了一系列方法来解决此不完整的图像文本群集问题(IITC),但仍然存在以下问题:1)大多数现有方法几乎不考虑异质特征域之间的明显差距。 2)对于缺少数据,很少保证由现有方法生成的表示形式适合聚类任务。 3)现有方法不利用内部和内部模式的潜在连接。在本文中,我们提出了一个聚类引起的生成不完整的图像文本聚类(CIGIT-C)网络,以应对上述挑战。更具体地说,我们首先使用特定于模态的编码器将原始功能映射到更独特的子空间。通过使用对抗生成网络在另一种模态上产生一种方式,可以彻底探索内部内部和模式之间的潜在连接。最后,我们使用两个KL DiverGence损失更新相应的模态特异性编码器。公共图像文本数据集的实验结果表明,建议的方法优于IITC作业更有效。
translated by 谷歌翻译