近年来,在线增量学习中兴趣增长。然而,这方面存在三个主要挑战。第一个主要困难是概念漂移,即流数据中的概率分布会随着数据到达而改变。第二个重大困难是灾难性的遗忘,即忘记在学习新知识之前学到的东西。我们经常忽略的最后一个是学习潜在的代表。只有良好的潜在表示可以提高模型的预测准确性。我们的研究在此观察中建立并试图克服这些困难。为此,我们提出了一种适应性在线增量学习,用于不断发展数据流(AOL)。我们使用带内存模块的自动编码器,一方面,我们获得了输入的潜在功能,另一方面,根据自动编码器的重建丢失与内存模块,我们可以成功检测存在的存在概念漂移并触发更新机制,调整模型参数及时。此外,我们划分从隐藏层的激活导出的特征,分为两个部分,用于分别提取公共和私有特征。通过这种方法,该模型可以了解新的即将到来的实例的私有功能,但不要忘记我们在过去(共享功能)中学到的内容,这减少了灾难性遗忘的发生。同时,要获取融合特征向量,我们使用自我关注机制来有效地融合提取的特征,这进一步改善了潜在的代表学习。
translated by 谷歌翻译
Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, overview the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts and practitioners.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
Concept drift describes unforeseeable changes in the underlying distribution of streaming data over time. Concept drift research involves the development of methodologies and techniques for drift detection, understanding and adaptation. Data analysis has revealed that machine learning in a concept drift environment will result in poor learning results if the drift is not addressed. To help researchers identify which research topics are significant and how to apply related techniques in data analysis tasks, it is necessary that a high quality, instructive review of current research developments and trends in the concept drift field is conducted. In addition, due to the rapid development of concept drift in recent years, the methodologies of learning under concept drift have become noticeably systematic, unveiling a framework which has not been mentioned in literature. This paper reviews over 130 high quality publications in concept drift related research areas, analyzes up-to-date developments in methodologies and techniques, and establishes a framework of learning under concept drift including three main components: concept drift detection, concept drift understanding, and concept drift adaptation. This paper lists and discusses 10 popular synthetic datasets and 14 publicly available benchmark datasets used for evaluating the performance of learning algorithms aiming at handling concept drift. Also, concept drift related research directions are covered and discussed. By providing state-of-the-art knowledge, this survey will directly support researchers in their understanding of research developments in the field of learning under concept drift.
translated by 谷歌翻译
流数据分类的重要问题之一是概念漂移的发生,包括分类任务的概率特征的变化。这种现象不稳定了分类模型的性能,并严重降低了其质量。需要抵消这种现象的适当策略来使分类器适应变化的概率特征。实现此类解决方案的一个重要问题是访问数据标签。它通常是昂贵的,从而最大限度地减少与该过程相关的费用,提出了基于半监督学习的学习策略,例如,采用主动学习方法,该方法指示哪些传入对象是有价值的,以便标记为提高分类器的性能。本文提出了一种基于基于分类器集合学习的非静止数据流的基于块的方法,以及考虑可以成功应用于任何数据流分类算法的有限预算的主动学习策略。已经通过使用真实和生成的数据流进行了计算机实验来评估所提出的方法。结果证实了最先进的方法的高质量。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
The literature on machine learning in the context of data streams is vast and growing. However, many of the defining assumptions regarding data-stream learning tasks are too strong to hold in practice, or are even contradictory such that they cannot be met in the contexts of supervised learning. Algorithms are chosen and designed based on criteria which are often not clearly stated, for problem settings not clearly defined, tested in unrealistic settings, and/or in isolation from related approaches in the wider literature. This puts into question the potential for real-world impact of many approaches conceived in such contexts, and risks propagating a misguided research focus. We propose to tackle these issues by reformulating the fundamental definitions and settings of supervised data-stream learning with regard to contemporary considerations of concept drift and temporal dependence; and we take a fresh look at what constitutes a supervised data-stream learning task, and a reconsideration of algorithms that may be applied to tackle such tasks. Through and in reflection of this formulation and overview, helped by an informal survey of industrial players dealing with real-world data streams, we provide recommendations. Our main emphasis is that learning from data streams does not impose a single-pass or online-learning approach, or any particular learning regime; and any constraints on memory and time are not specific to streaming. Meanwhile, there exist established techniques for dealing with temporal dependence and concept drift, in other areas of the literature. For the data streams community, we thus encourage a shift in research focus, from dealing with often-artificial constraints and assumptions on the learning mode, to issues such as robustness, privacy, and interpretability which are increasingly relevant to learning in data streams in academic and industrial settings.
translated by 谷歌翻译
挖掘数据流姿势存在许多挑战,包括数据的连续和非静止性质,待处理的大量信息和限制计算资源。虽然在文献中提出了一些针对这个问题的监督解决方案,但大多数人都假定访问地面真理(以类标签的形式)是无限的,并且在更新学习系统时可以立即使用此类信息。这远非现实,因为必须考虑获取标签的基本成本。因此,需要解决流方案中实际真相要求的解决方案。在本文中,通过组合来自主动学习和自我标签的信息,提出了一种用于预算的挖水数据流的新框架。我们介绍了几种策略,可以利用智能实例选择和半监督程序,同时考虑到概念漂移的潜在存在。这种混合方法允许有效的探索和利用在现实标记预算中的流数据结构。由于我们的框架工作为包装器,因此它可以应用于不同的学习算法。实验研究,在具有各种类型的概念漂移的多样化现实数据流中进行的实验研究,证明了在处理对类标签的高度限制时拟议的策略的有用性。当一个人不能增加标签或更换低效分类器的预算时,呈现的混合方法尤其可行。我们为我们的战略提供了一套关于适用性领域的建议。
translated by 谷歌翻译
TimeSeries Partitioning是大多数机器学习驱动的传感器的IOT应用程序的重要步骤。本文介绍了一种采样效率,鲁棒,时序分割模型和算法。我们表明,通过基于最大平均差异(MMD)的分割目标来学习特定于分割目标的表示,我们的算法可以鲁布布地检测不同应用程序的时间序列事件。我们的损耗功能允许我们推断是否从相同的分布(空假设)中绘制了连续的样本序列,并确定拒绝零假设的对之间的变化点(即,来自不同的分布)。我们展示了其在基于环境传感的活动识别的实际IOT部署中的适用性。此外,虽然文献中存在许多关于变更点检测的作品,但我们的模型明显更简单,匹配或优于最先进的方法。我们可以平均地在9-93秒内完全培训我们的模型,而在不同应用程序上的数据的差异很小。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
多视图学习尝试通过利用多视图数据之间的共识和/或互补性来生成具有更好性能的模型。然而,就互补性而言,大多数现有方法只能找到单一互补性而不是多样性的互补信息。在本文中,为了同时利用互补性和一致性,对多视图代表学习的互相促进互补性的深度学习的潜力,提出了一种新的监督多视图表示学习算法,称为自我关注具有多样性促进互补性的多视图网络(SAMVDPC)通过一组编码器利用一致性,使用自我关注查找需要多样性的互补信息。在八个现实世界数据集上进行的广泛实验已经证明了我们所提出的方法的有效性,并在几种基线方法上显示出优于的优势,只考虑单个互补信息。
translated by 谷歌翻译
概念漂移过程挖掘(PM)是一种挑战,因为古典方法假设进程处于稳态,即事件共享相同的进程版本。我们对这些领域的交叉点进行了系统的文献综述,从而审查了过程采矿中的概念漂移,并提出了用于漂移检测和在线流程挖掘的现有技术的分类,以实现不断发展的环境。现有的作品描绘了(i)PM仍然主要关注离线分析,并且(ii)由于缺乏公共评估协议,数据集和指标,过程中的概念漂移技术的评估是麻烦的。
translated by 谷歌翻译
来自数据流的在线异常检测对于许多应用程序的安全性至关重要,但是由于来自IoT设备和基于云的基础架构的复杂且不断发展的数据流而面临严重的挑战。不幸的是,现有方法对这些挑战太短。在线异常检测方法承担着处理复杂性的负担,而离线深度异常检测方法则遭受了不断发展的数据分布的影响。本文介绍了一个在线深度异常检测的框架ARCU,可以与任何基于自动编码器的深度异常检测方法实例化。它使用两种新颖的技术使用自适应模型合并方法来处理复杂而不断发展的数据流:概念驱动的推理和漂移感知模型池更新;前者检测到最适合复杂性的模型组合的异常,后者会动态调整模型池以适合不断发展的数据流。在具有高维和概念拖延的十个数据集的全面实验中,Arcus提高了基于最先进的自动编码器的流媒体变体的异常检测准确性,并提高了最新的方法和最新的方法。 ART流动异常检测方法的分别为22%和37%。
translated by 谷歌翻译
在基于人工神经网络的终身学习系统中,最大的障碍之一是在遇到新信息时无法保留旧知识。这种现象被称为灾难性遗忘。在本文中,我们提出了一种新型的连接主义架构,即顺序的神经编码网络,在从数据点流中学习时忘记了,并且与当今的网络不同,它不会通过流行的错误反向传播来学习。基于预测性处理的神经认知理论,我们的模型以生物学上可行的方式适应了突触,而另一个神经系统学会了指导和控制这种类似皮层的结构,模仿了一些基础神经节的某些任务连续控制功能。在我们的实验中,我们证明了与标准神经模型相比,我们的自组织系统经历的遗忘大大降低,表现优于先前提出的方法,包括基于排练/数据缓冲的方法,包括标准(SplitMnist,SplitMnist,Split Mnist等) 。)和定制基准测试,即使以溪流式的方式进行了训练。我们的工作提供了证据表明,在实际神经元系统中模仿机制,例如本地学习,横向竞争,可以产生新的方向和可能性,以应对终身机器学习的巨大挑战。
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译