通过技术进步,无人机已成为无人驾驶飞行器,可以由人类控制或到达目的地。这也可能是自主的,在那里,无人机本身是足够智能的,以找到从指定源到达目的地的最短障碍路径。成为计划的智能城市,甚至是受天然灾害影响的残骸网站,我们可能会想象建筑物,任何表面竖立的结构或其他堵塞作为无人机在直线视线中飞行的障碍。为了解决这种无人机的这种路径规划,鸟瞰整个景观的眼睛视图首先转变为栅格细胞的图表,其中一些被占据以指示障碍物,有些是可以自由地指示自由路径。我们提出了一种方法来找出GPS指导的坐标系中最短的障碍路径。因此,自主无人机(Autodrone)将能够沿着最短路径从一个地方移动到另一个地方,而不会碰撞入住障碍物,同时在二维空间中行驶。还阐述了延伸到长途旅行和3D空间的启发式。我们的方法可以特别有益于救援行动和快速交付或以节能方式接收,其中我们的算法将有助于找出它应该飞行的最短路径和角度。实验是在不同场景的地图布局和障碍物位置进行,以了解由自主无人机计算的最短可行路线。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
两栖地面汽车将飞行和驾驶模式融合在一起,以实现更灵活的空中行动能力,并且最近受到了越来越多的关注。通过分析现有的两栖车辆,我们强调了在复杂的三维城市运输系统中有效使用两栖车辆的自动驾驶功能。我们审查并总结了现有两栖车辆设计中智能飞行驾驶的关键促成技术,确定主要的技术障碍,并提出潜在的解决方案,以实现未来的研究和创新。本文旨在作为研究和开发智能两栖车辆的指南,以实现未来的城市运输。
translated by 谷歌翻译
在机器人研究中,在不平坦的地形中安全导航是一个重要的问题。在本文中,我们提出了一个2.5D导航系统,该系统包括高程图构建,路径规划和本地路径,随后避免了障碍。对于本地路径,我们使用模型预测路径积分(MPPI)控制方法。我们为MPPI提出了新的成本功能,以使其适应高程图和通过不平衡运动。我们在多个合成测试和具有不同类型的障碍物和粗糙表面的模拟环境中评估系统。
translated by 谷歌翻译
运动规划和导航,特别是对于在复杂导航环境中运行的移动机器人,自机器人启动以来一直是一个核心问题。一种解决它的启发式方法是构造基于图形的表示(路径),捕获配置空间的连接。概率路线图是机器人社区的常用方法,为导航移动机器人路径规划构建路径。在该研究中,提出了通过在障碍物的存在下从PRM获得路径之后的移动机器人路径规划的路径平坦化。所提出的方法以两个步骤运行;第一个在障碍物存在环境中生成初始状态之间的最短路径,其中通过连接中间节点来使用PRM来构造直线路径。第二步是通过节点存在引起的每个角落平滑。使用弧形圆角刮削角落确保移动机器人的光滑转弯。用不同的PRM功能模拟和测试了建议的方法。实验结果表明,构造的路径不仅仅是提供平稳的转动;在避免障碍时,它也更短且更快地完成机器人。
translated by 谷歌翻译
区域覆盖范围问题是使用安装在机器人(例如无人驾驶汽车(UAV)(UAV)和无人接地车辆(UGV)等机器人上的传感器有效维修给定的二维表面的任务。我们提出了一种新颖的配方,用于生成多个容量受限机器人的覆盖路线,可以根据电池寿命或飞行时间指定容量。遍历环境对具有容量限制的机器人资源产生了需求。我们方法的主要方面是将区域覆盖问题转换为线覆盖范围问题(即线性特征的覆盖范围),然后生成途径,以最大程度地减少旅行的总成本,同时尊重容量约束。我们定义了两种旅行模式:(1)维修和(2)无人机,这与机器人是否执行特定于任务的操作相对应。我们的配方允许对两种模式的单独和不对称的旅行成本和需求。此外,从细胞分解计算出来的细胞,旨在最小化转弯的数量,不需要单调多边形。我们为细胞分解和生成服务轨道开发了新的程序,这些过程可以处理有或没有孔的非符号酮多边形。我们在具有25个室内环境的地面机器人数据集和一个具有300个室外环境的空中机器人数据集上建立了算法的功效。该算法生成的解决方案的成本比最新方法平均低10%。我们还证明了我们在无人机实验中的算法。
translated by 谷歌翻译
未知环境中的路径规划问题仍然是一个具有挑战性的问题 - 由于在导航期间逐渐观察到环境,因此,基础规划师必须更新环境表示,并及时且不断地进行重新启动,以说明新的观察值。在本文中,我们提出了一个基于图形的计划框架,能够处理已知和未知环境中的导航任务。计划者采用环境的多边形表示,并通过在障碍物周围提取边缘点以形成封闭的多边形来构建表示形式。因此,该方法使用两层数据结构动态更新了全局可见性图,并扩展了可见性边缘以及导航和删除被新观察到的障碍物阻塞的边缘。当在未知环境中导航时,该方法可以通过即时拾取环境布局,更新可见性图,并快速重新规划与新观察到的环境相对应,从而尝试发现目标的方法。我们在模拟和现实世界中评估了该方法。该方法显示了尝试和导航未知环境的能力,从基于搜索的方法中减少了多达12-47%的旅行时间:A*,d* lite,并且比基于采样的方法相比: rrt*,bit*和Spars。
translated by 谷歌翻译
我们生活的世界充满了技术,而每天都有无人机的进步和使用有效地增加。由于许多应用程序方案,在某些任务中,无人机容易受到外部干扰的影响,例如地面站的连通性丧失,安全任务,安全问题和与交货相关的任务。因此,根据情况,这可能会影响运营并导致无人机的安全着陆。因此,本文提出了一种在动态环境中安全着陆的启发式方法。这种方法的目的是检测安全的潜在降落区 - PLZ,并找出最适合降落的区域。最初,PLZ是通过通过Canny Edge算法处理图像来检测的,然后应用了直径估计值对于每个边缘最小的区域。比车辆间隙更高的斑点被标记为安全PLZ。在该方法的第二阶段中,计算了向PLZ移动的动态障碍的速度,并考虑到达到区域的时间。计算无人机的ETA并在无人机的下降期间,执行动态障碍物。在现实世界环境中测试的方法显示了现有工作的更好结果。
translated by 谷歌翻译
Visual Teach and Repeat 3 (VT&R3), a generalization of stereo VT&R, achieves long-term autonomous path-following using topometric mapping and localization from a single rich sensor stream. In this paper, we improve the capabilities of a LiDAR implementation of VT&R3 to reliably detect and avoid obstacles in changing environments. Our architecture simplifies the obstacle-perception problem to that of place-dependent change detection. We then extend the behaviour of generic sample-based motion planners to better suit the teach-and-repeat problem structure by introducing a new edge-cost metric paired with a curvilinear planning space. The resulting planner generates naturally smooth paths that avoid local obstacles while minimizing lateral path deviation to best exploit prior terrain knowledge. While we use the method with VT&R, it can be generalized to suit arbitrary path-following applications. Experimental results from online run-time analysis, unit testing, and qualitative experiments on a differential drive robot show the promise of the technique for reliable long-term autonomous operation in complex unstructured environments.
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
By utilizing only depth information, the paper introduces a novel but efficient local planning approach that enhances not only computational efficiency but also planning performances for memoryless local planners. The sampling is first proposed to be based on the depth data which can identify and eliminate a specific type of in-collision trajectories in the sampled motion primitive library. More specifically, all the obscured primitives' endpoints are found through querying the depth values and excluded from the sampled set, which can significantly reduce the computational workload required in collision checking. On the other hand, we furthermore propose a steering mechanism also based on the depth information to effectively prevent an autonomous vehicle from getting stuck when facing a large convex obstacle, providing a higher level of autonomy for a planning system. Our steering technique is theoretically proved to be complete in scenarios of convex obstacles. To evaluate effectiveness of the proposed DEpth based both Sampling and Steering (DESS) methods, we implemented them in the synthetic environments where a quadrotor was simulated flying through a cluttered region with multiple size-different obstacles. The obtained results demonstrate that the proposed approach can considerably decrease computing time in local planners, where more trajectories can be evaluated while the best path with much lower cost can be found. More importantly, the success rates calculated by the fact that the robot successfully navigated to the destinations in different testing scenarios are always higher than 99.6% on average.
translated by 谷歌翻译
自主驾驶的车辆必须能够以无碰撞的方式在动态和不可预测的环境中导航。到目前为止,这仅是在无人驾驶汽车和仓库装置中部分实现的,在该装置中,诸如道路,车道和交通标志之类的标记结构简化了运动计划和避免碰撞问题。我们正在为类似汽车的车辆提供一种新的控制方法,该方法基于前所未有的快节奏A*实现,该方法允许控制周期以30 Hz的频率运行。这个频率使我们能够将A*算法作为低级重型控制器,非常适合在几乎任何动态环境中导航和避免碰撞。由于有效的启发式方法由沿着目标最短路径铺设的旋转 - 翻译 - 旋转运动运动,因此我们的短期流产A*(staa*)会快速收敛,并可以尽早中止,以确保高而稳定的控制速度。尽管我们的staa*沿着最短路径扩展状态,但它会照顾与环境的碰撞检查,包括预测的移动障碍状态,并返回计算时间用完时找到的最佳解决方案。尽管计算时间有限,但由于最短路径的以下路径,我们的staa*并未被困在拐角处。在模拟和实体机器人实验中,我们证明了我们的控制方法几乎完全消除了碰撞,并且具有改进的动态窗口方法的改进版本,并具有预测性的避免功能。
translated by 谷歌翻译
服务交付设定为体验一个主要的范式转变,并在无人机技术中加上客户的快速进步,加上客户的较高期望和增加的竞争。我们提出了一种新颖的面向服务的方法,以使无人机运行的Skyway网络中的包装中无处不在地传送。我们讨论了基于服务的无人机交付的福利,框架和建筑,当代方法,开放的挑战和未来视力方向。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
这封信涉及地形重建未知障碍环境的3D报道路径规划(CPP)问题。由于感测局限性,所提出的方法称为CT-CPP,执行3D区域的分层扫描以收集地形数据,其中使用覆盖树(CT)的概念与TSP启发的树遍历遍历策略进行优化。。CT-CPP方法在高保真水下模拟器上验证,结果与CPP方法后的现有地形进行了比较。结果表明,CT-CPP在轨迹长度,能量消耗和重建误差产生显着降低。
translated by 谷歌翻译
在这项工作中,我们提出了一个端到端的异质多机器人系统框架,地面机器人能够在高空四个四极管实时创建的语义图中进行本地化,计划和导航。地面机器人在没有任何外部干预的情况下独立选择并解散目标。此外,他们通过使用语义将其本地地图与高架图匹配,执行跨视图本地化。通信主链是机会主义的,并且可以分配,使整个系统除了四型四型GPS之外没有外部基础架构,没有外部基础架构。我们通过在不同环境中的多个实验上执行不同的任务,通过执行不同的任务,对系统进行了广泛的测试。我们的地面机器人在现实世界中最少的干预和96公里的模拟无需干预即可自主行驶以上超过6公里。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
在本文中,我们为全向机器人提供了一种积极的视觉血液。目标是生成允许这样的机器人同时定向机器人的控制命令并将未知环境映射到最大化的信息量和消耗尽可能低的信息。利用机器人的独立翻译和旋转控制,我们引入了一种用于活动V-SLAM的多层方法。顶层决定提供信息丰富的目标位置,并为它们产生高度信息的路径。第二个和第三层积极地重新计划并执行路径,利用连续更新的地图和本地特征信息。此外,我们介绍了两个实用程序配方,以解释视野和机器人位置的障碍物。通过严格的模拟,真正的机器人实验和与最先进的方法的比较,我们证明我们的方法通过较小的整体地图熵实现了类似的覆盖结果。这是可以获得的,同时保持横向距离比其他方法短至39%,而不增加车轮的总旋转量。代码和实现详细信息作为开源提供。
translated by 谷歌翻译
自主场景的曝光和探索,尤其是在本地化或沟通有限的区域,对于在未知场景中寻找目标有用,仍然是计算机导航中的一个具有挑战性的问题。在这项工作中,我们提出了一种用于实时环境探索的新方法,其唯一的要求是一个视觉上相似的数据集,用于预训练,场景中足够的照明以及用于环境感应的机上前瞻性RGB摄像机。与现有方法相反,我们的方法只需要一个外观(图像)才能做出一个良好的战术决定,因此在非成长,恒定的时间内起作用。两个方向的预测以像素为特征,称为goto和lookat像素,包括我们方法的核心。这些像素通过以下方式编码建议的飞行指令:goto像素定义了代理应以一个距离单位移动的方向,而Lookat像素定义了相机应在下一步中指向的方向。这些飞行的指导像素经过优化,以揭示当前未开发的区域的最多数量。我们的方法提出了一种新型的基于深度学习的导航方法,能够解决此问题并在更复杂的设置中证明其能力,即计算能力有限。此外,我们提出了一种生成面向导航数据集的方法,从而可以使用RGB和深度图像对我们的方法有效培训。在模拟器中进行的测试,评估了稀疏像素的推断过程的协调,以及旨在揭示区域并降低目标距离的2D和3D测试飞行取得了令人鼓舞的结果。与最先进的算法的比较表明,我们的方法能够表现出色,在测量每个相机姿势的新体素,最小距离目标距离,所见表面素的百分比和计算时间指标。
translated by 谷歌翻译