数据稀缺和噪声是机器学习工业应用中的重要问题。然而,设计可扩展和广义的方法往往挑战,以解决具有黑盒式模型的数据集的基本分布和语义特性。因此,以数据为中心的方法对于机器学习操作管道的自动化至关重要。为了充当这种自动化的基础,我们建议一个用于改进图像分类问题中数据质量的域名不可知的管道。该管道包含数据估值,清洁和增强。通过这些方法的适当组合,我们只能在数据中心AI竞争中达到84.711%的测试精度(最荣誉在最具创新性中提及)。
translated by 谷歌翻译
以数据为中心的AI最近被证明更有效和高性能,而传统的以模式为中心的AI提供更少且更少的福利。它强调提高数据集的质量,以实现更好的模型性能。由于其巨大的实用性和越来越多,这一领域具有重要潜力。然而,我们在这一领域没有看到显着的研究进展,特别是在NLP中。我们提出DatacLue,它是第一个在NLP字段中应用的数据中心基准。我们还提供三个简单但有效的基线,以促进该领域的研究(改善宏F1高达5.7%的点)。此外,我们与人类注释者进行全面的实验,并显示了Dataclue的硬度。我们还尝试高级方法:忘记通知的引导标签校正方法。与Datacleue相关的所有资源,包括DataSet,Toolkit,排行榜和Baselines,可在Https://github.com/cluebenchmark/dataclue在线提供
translated by 谷歌翻译
人行道挑战的数据科学(DSPC)旨在通过提供一个基准的数据集和代码来加速自动化视觉系统,以进行路面状况监测和评估,以创新和开发机器学习算法,这些算法已准备就绪,可以准备好练习。行业使用。比赛的第一版吸引了来自8个国家的22支球队。要求参与者自动检测和分类从多个来源捕获的图像中存在的不同类型的路面遇险,并且在不同的条件下。竞争是以数据为中心的:通过利用各种数据修改方法(例如清洁,标签和增强),团队的任务是提高预定义模型体系结构的准确性。开发了一个实时的在线评估系统,以根据F1分数对团队进行排名。排行榜的结果显示了机器在路面监控和评估中提高自动化的希望和挑战。本文总结了前5个团队的解决方案。这些团队提出了数据清洁,注释,增强和检测参数调整领域的创新。排名最高的团队的F1得分约为0.9。本文以对当前挑战效果很好的不同实验的综述以及对模型准确性的任何显着提高的审查进行了综述。
translated by 谷歌翻译
最近已证明自我监督的对比学习(CL)非常有效地防止深网贴上嘈杂的标签。尽管取得了经验成功,但对对比度学习对增强鲁棒性的影响的理论理解非常有限。在这项工作中,我们严格地证明,通过对比度学习学到的表示矩阵可以通过:(i)与数据中每个子类相对应的一个突出的奇异值来增强鲁棒性,并显着较小的剩余奇异值; (ii){{显着的单数矢量与每个子类的干净标签之间的一个很大的对齐。以上属性使对此类表示的线性层能够有效地学习干净的标签,而不会过度适应噪音。}我们进一步表明,通过对比度学习预先训练的深网的雅各比式的低级别结构使他们能够获得优越的最初的性能是在嘈杂的标签上进行微调时。最后,我们证明了对比度学习提供的最初鲁棒性使鲁棒训练方法能够在极端噪声水平下实现最先进的性能,例如平均27.18 \%\%和15.58 \%\%\%\%\%cifar-10上的提高和80 \%对称嘈杂标签的CIFAR-100,网络视频的准确性提高4.11 \%。
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
最近的对比方法显着改善了几个域的自我监督学习。特别地,对比方法是最有效的,其中数据增强可以容易地构造。在计算机愿景中。但是,在没有建立的数据变换(如时间序列数据)的情况下,它们在域中不太成功。在本文中,我们提出了一种新颖的自我监督学习框架,将对比学习与神经过程结合起来。它依赖于神经过程的最近进步来执行时间序列预测。这允许通过采用一组各种采样功能来生成增强版本的数据,并且因此避免手动设计增强。我们扩展了传统的神经过程,并提出了一种新的对比损失,以便在自我监督设置中学习时序序列表示。因此,与以前的自我监督方法不同,我们的增强管道是任务不可行的,使我们的方法能够在各种应用程序中执行良好。特别是,具有使用我们的方法训练的线性分类器的RESET能够跨越工业,医疗和音频数据集的最先进的技术,从而提高ECG定期数据的精度超过10%。我们进一步证明,我们的自我监督的表示在潜在的空间中更有效,改善了多种聚类指标,并且在10%的标签上进行微调我们的方法实现了完全监督的竞争竞争。
translated by 谷歌翻译
复制检测,这是一个任务,用于确定图像是否是数据库中任何图像的修改副本,是一个未解决的问题。因此,我们通过培训具有对比学习的卷积神经网络(CNNS)来解决副本检测。具有大型记忆库和硬数据增强的培训使CNN能够获得更辨别的表示。我们提出的负嵌入减法进一步提高了复印检测精度。使用我们的方法,我们在Facebook AI图像相似度挑战中取得了第一名:描述符轨道。我们的代码在这里公开提供:\ url {https://github.com/lyakaap/isc21-descriptor-track--st}
translated by 谷歌翻译
作为数据为中心的AI竞争的一部分,我们提出了一种以迭代采样通过迭代采样来改善培训样本的多样性。该方法本身强烈依赖于增强样本的保真度和增强方法的多样性。此外,我们通过引入更多用于困难类别的样本来进一步提高性能,特别是为边缘案例提供更接近的样本可能会在手中错误分类的模型。
translated by 谷歌翻译
本文提出了一种简单但有效的基于插值的数据增强方法,称为Doublemix,以改善模型在文本分类中的鲁棒性。 Doublemix首先利用几个简单的增强操作来为每个培训数据生成几个扰动的样本,然后使用扰动的数据和原始数据在神经模型的隐藏空间中进行两步插值。具体而言,它首先将扰动的数据混合到合成样本中,然后混合原始数据和合成的扰动数据。 Doublemix通过学习隐藏空间中的“转移”功能来增强模型的鲁棒性。在六个文本分类基准数据集上,我们的方法优于几种流行的文本增强方法,包括令牌级别,句子级别和隐藏级数据增强技术。此外,低资源设置中的实验表明,当培训数据稀缺时,我们的方法一致地改善了模型的性能。广泛的消融研究和案例研究证实,我们方法的每个组成部分都有助于最终表现,并表明我们的方法在具有挑战性的反例中表现出卓越的表现。此外,视觉分析表明,我们方法生成的文本特征是高度可解释的。我们的本文代码可以在https://github.com/declare-lab/doublemix.git上找到。
translated by 谷歌翻译
对比学习方法在学习视觉表现方面取得了巨大成功,目标课程少数标签很少。这意味着诱使将它们缩放超出策划的“种子”基准,从互联网级外部源结合更多未标记的图像以提高其性能。然而,在实践中,由于所需的型号和更长的培训,更大的未标记数据将需要更多的计算资源。此外,开放世界未标记的数据通常遵循隐式的长尾类或属性分布,其中许多也不属于目标类。盲目利用所有未标记的数据,因此可以导致数据不平衡以及分散化问题。这使我们能够寻求原则性的方法来战略性地从外部来源选择未标记的数据,以便学习相关课程的可概括,平衡和多样化的陈述。在这项工作中,我们介绍了一个名为Model-Aware K-Center(MAK)的开放式未标记的数据采样框架,其遵循三个简单的原则:(1)尾巴,这鼓励通过对实证对比进行尾舱来抽样。随机数据增强的样本的损失预期(ECLE); (2)靠近,拒绝分配可能分散训练的分配异常值; (3)多样性,可确保采样例集中的多样性。经验,使用ImageNet-100-LT(没有标签)作为种子数据集和两个“嘈杂”的外部数据源,我们证明MAK可以一致地提高学习功能的总体表示质量和阶级平衡,如通过线性评估的全拍和少量设置的分类器评估。代码可用:\ url {https://github.com/vita-group/mak
translated by 谷歌翻译
卷积神经网络(CNN)通过使用大型数据集在图像分类方面取得了重大成功。但是,在小规模数据集上从头开始学习,有效地有效地学习,这仍然是巨大的挑战。借助有限的培训数据集,类别的概念将是模棱两可的,因为过度参数化的CNN倾向于简单地记住数据集,从而导致概括能力差。因此,研究如何在避免过度拟合的同时学习更多的判别性表示至关重要。由于类别的概念往往是模棱两可的,因此获取更多个人信息很重要。因此,我们提出了一个新框架,称为“吸引和修复”,由对比度正规化(CR)组成以丰富特征表示形式,对称交叉熵(SCE),以平衡不同类别的拟合和平均教师以校准标签信息。具体而言,SCE和CR学习歧视性表示,同时通过班级信息(吸引)和实例(拒绝)之间的适应性权衡缓解过度构成。之后,平均教师通过校准更准确的软伪标签来进一步提高性能。足够的实验验证了吸引和修复框架的有效性。加上其他策略,例如积极的数据增强,tencrop推断和模型结合,我们在ICCV 2021 vipriors图像分类挑战中获得了第二名。
translated by 谷歌翻译
使用嘈杂标签(LNL)学习旨在设计策略来通过减轻模型过度适应嘈杂标签的影响来提高模型性能和概括。 LNL的主要成功在于从大量嘈杂数据中识别尽可能多的干净样品,同时纠正错误分配的嘈杂标签。最近的进步采用了单个样品的预测标签分布来执行噪声验证和嘈杂的标签校正,很容易产生确认偏差。为了减轻此问题,我们提出了邻里集体估计,其中通过将其与其功能空间最近的邻居进行对比,重新估计了候选样本的预测性可靠性。具体而言,我们的方法分为两个步骤:1)邻域集体噪声验证,将所有训练样品分为干净或嘈杂的子集,2)邻里集体标签校正到Relabel嘈杂样品,然后使用辅助技术来帮助进一步的模型优化。 。在四个常用基准数据集(即CIFAR-10,CIFAR-100,Clothing-1M和WebVision-1.0)上进行了广泛的实验,这表明我们提出的方法非常优于最先进的方法。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
对比性自我监督学习方法学会将图像(例如图像)映射到无需标签的情况下将图像映射到非参数表示空间中。尽管非常成功,但当前方法在训练阶段需要大量数据。在目标训练集规模限制的情况下,已知概括是差的。在大型源数据集和目标样本上进行微调进行预处理,容易在几杆方向上过度拟合,在几个弹药方面,只有少量的目标样本可用。在此激励的情况下,我们提出了一种用于自我监督的对比度学习的域适应方法,称为少数最大的学习方法,以解决对目标分布的适应问题,这些问题在几乎没有射击学习下。为了量化表示质量,我们在包括ImageNet,Visda和FastMRI在内的一系列源和目标数据集上评估了很少的最大最大速度,在这些数据集和FastMRI上,很少有最大最大的最大值始终优于其他方法。
translated by 谷歌翻译
在过去几年中,无监督的学习取得了很大的进展,特别是通过对比的自我监督学习。用于基准测试自我监督学习的主导数据集已经想象,最近的方法正在接近通过完全监督培训实现的性能。然而,ImageNet DataSet在很大程度上是以对象为中心的,并且目前尚不清楚这些方法的广泛不同的数据集和任务,这些方法是非以对象为中心的,例如数字病理学。虽然自我监督的学习已经开始在这个领域探讨了令人鼓舞的结果,但有理由看起来更接近这个环境与自然图像和想象成的不同。在本文中,我们对组织病理学进行了对比学学习的深入分析,引脚指向对比物镜的表现如何不同,由于组织病理学数据的特征。我们提出了一些考虑因素,例如对比目标和超参数调整的观点。在大量的实验中,我们分析了组织分类的下游性能如何受到这些考虑因素的影响。结果指出了对比学习如何减少数字病理中的注释工作,但需要考虑特定的数据集特征。为了充分利用对比学习目标,需要不同的视野和超参数校准。我们的结果为实现组织病理学应用的自我监督学习的全部潜力铺平了道路。
translated by 谷歌翻译
可解释的人工智能(XAI)方法旨在帮助人类用户更好地了解AI代理的决策。但是,许多现代的XAI方法对最终用户,尤其是那些没有先前AI或ML知识的用户都不纯粹。在本文中,我们提出了一种新颖的XAI方法,我们称为责任,标识了特定决定的最负责任的培训示例。然后可以将此示例显示为一个解释:“这是我(AI)学到的使我做到的。”我们介绍了许多领域的实验结果,以及亚马逊机械Turk用户研究的结果,比较了责任和图像分类任务上的现有XAI方法。我们的结果表明,责任可以帮助提高人类最终用户和次要ML模型的准确性。
translated by 谷歌翻译
我们解决了视频动作识别的数据增强问题。视频中的标准增强策略是手工设计的,并随机对可能的增强数据点的空间进行采样,而不知道哪个增强点会更好,或者是通过启发式方法会更好。我们建议学习是什么使良好的视频供行动识别,并仅选择高质量的样本进行增强。特别是,我们选择前景和背景视频的视频合成作为数据增强过程,从而导致各种新样本。我们了解了哪对视频要增加,而无需实际综合它们。这降低了可能的增强空间,这具有两个优势:它节省了计算成本并提高了最终训练的分类器的准确性,因为增强对的质量高于平均水平。我们在整个训练环境中介绍了实验结果:几乎没有射击,半监督和完全监督。我们观察到所有这些都对动力学,UCF101,HMDB51的基准进行了一致的改进,并在设置上实现了有限数据的新最新设置。在半监督环境中,我们看到高达8.6%的改善。
translated by 谷歌翻译
机器学习模型的性能会在数据的分布变化下大大降低。我们提出了一种新的分类方法,可以通过将有关数据的“高级”结构与标准分类器相结合,可以改善分配变化的鲁棒性。 。然后,在每个群集中,我们通过诸如Deep Neural Networks之类的标准模型来学习基于更精细的歧视特征的本地分类器。我们在内存分类器中建立了概括界限。我们在实验中说明它们可以改善图像数据集上的分布变化的概括和稳健性。我们展示的进步超出了标准数据增强技术。
translated by 谷歌翻译
学习没有人为监督的有效视觉表现是计算机愿景中的一个长期问题。自我监督学习算法的最新进展已经利用了对比学习,方法如SIMCLR,它将增强组成的方法施加到图像,并最大限度地减少两个增强图像之间的对比损耗。在本文中,我们呈现爪子,一个注释高效的学习框架,解决手动标记大规模农业数据集的问题以及异常检测和植物生长分析等潜在应用。爪子使用由SIMCLR的网络骨干,并弱监督探讨群集群中对比学习的影响。另外,我们在使用对比损耗函数之前最大化图像对之间的协议之前将硬注意掩模注入裁剪输入图像。此掩码强制该网络专注于相关的对象功能并忽略背景特征。我们使用带有227,060个样本的农业数据集进行监督SIMCLR和爪子之间的结果,其中包含由11种不同的作物类别组成的227,060个样本。我们的实验和广泛的评估表明,爪子达到了0.7325的竞争性NMI得分。此外,爪参加了具有最小参数调谐和形成明确定义的群集的非常大的数据集的低尺寸表示,其利用诸如高斯混合模型的高效,透明和高度可解释的聚类方法。
translated by 谷歌翻译
长期以来,对新概念的强大概括一直是人类智力的独特特征。然而,深层生成模型的最新进展已导致神经体系结构能够从单个训练示例中综合新的视觉概念实例。但是,这些模型与人之间的更精确比较是不可能的,因为生成模型的现有性能指标(即FID,IS,可能性)不适合单次生成场景。在这里,我们提出了一个新框架,以评估沿两个轴的单发生成模型:样本可识别性与多样性(即类内变异性)。使用此框架,我们对Omniglot手写数据集上的代表性单弹性生成模型进行系统评估。我们首先表明类似GAN的模型属于多样性可识别性空间的相对端。对关键模型参数效果的广泛分析进一步表明,空间注意力和上下文集成对多样性可识别性的权衡具有线性贡献。相比之下,解散将模型沿抛物线曲线运输,该模型可用于最大化识别率。使用多样性可识别性框架,我们能够识别紧密近似人类数据的模型和参数。
translated by 谷歌翻译