最近的对比方法显着改善了几个域的自我监督学习。特别地,对比方法是最有效的,其中数据增强可以容易地构造。在计算机愿景中。但是,在没有建立的数据变换(如时间序列数据)的情况下,它们在域中不太成功。在本文中,我们提出了一种新颖的自我监督学习框架,将对比学习与神经过程结合起来。它依赖于神经过程的最近进步来执行时间序列预测。这允许通过采用一组各种采样功能来生成增强版本的数据,并且因此避免手动设计增强。我们扩展了传统的神经过程,并提出了一种新的对比损失,以便在自我监督设置中学习时序序列表示。因此,与以前的自我监督方法不同,我们的增强管道是任务不可行的,使我们的方法能够在各种应用程序中执行良好。特别是,具有使用我们的方法训练的线性分类器的RESET能够跨越工业,医疗和音频数据集的最先进的技术,从而提高ECG定期数据的精度超过10%。我们进一步证明,我们的自我监督的表示在潜在的空间中更有效,改善了多种聚类指标,并且在10%的标签上进行微调我们的方法实现了完全监督的竞争竞争。
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
对于图像表示的自我监督学习最近对线性评估和微调评估有很多突破。这些方法依赖于巧妙制作的损失函数和培训设置,以避免特征崩溃问题。在本文中,我们改进了最近提出的VICREG纸,这引入了一个不依赖于专业训练环的损失函数,以收敛到有用的陈述。我们的方法改进了Vicrog中提出的协方差术语,另外我们通过极大地加速模型收敛的纤维镜层增强了架构的头部。我们的模型在UCR时间序列分类归档和PTB-XL ECG数据集的子集上实现了卓越的性能和对LINEAR评估和微调评估。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
在时间序列上进行预训练会带来独特的挑战,这是由于预训练和目标域之间的潜在不匹配,例如时间动力学的变化,快速变化的趋势以及远距离循环效应和短期循环效应,这会导致下游差的差表现。尽管域适应方法可以减轻这些偏移,但大多数方法都需要直接从目标域中进行示例,从而使其次优于预训练。为了应对这一挑战,方法需要适应具有不同时间动力学的目标域,并且能够在预训练期间看到任何目标示例。相对于其他方式,在时间序列中,我们期望同一示例的基于时间和频率的表示形式靠近时间频率。为此,我们认为时间频一致性(TF-C)(将特定示例的基于时间的社区嵌入到其基于频率的邻居和后背)是可取的。由TF-C激发,我们定义了一个可分解的预训练模型,其中自我监督信号由时间和频率分量之间的距离提供,每个信号通过对比度估计单独训练。我们在八个数据集上评估了新方法,包括电诊断测试,人类活动识别,机械故障检测和身体状态监测。针对八种最先进方法的实验表明,在一对一的设置中,TF-C平均比基准平均超过15.4%(F1分数)(例如,在EMG数据上对EEG预测的模型进行微调)和在具有挑战性的一对一环境中,最多可达8.4%(F1得分),这反映了现实世界应用中出现的场景广度。源代码和数据集可在https://anonymon.4open.science/r/tfc-pretraining-6b07上找到。
translated by 谷歌翻译
收集大量人生成的健康数据(可穿戴性),但注释给机器学习模型的注释过程是不切实际的。本文讨论了使用以前应用于视觉域的自我监督损失的自我监督方法,例如以前应用于视觉域,可以应用于跨越睡眠,心脏和心脏的下游分类任务的高维健康信号。代谢条件。为此,我们适应数据增强步骤和整体架构,以满足数据(可穿戴迹线)的时间性,并通过比较其他最先进的方法(包括监督学习)和对抗的无监督来评估5个下游任务。代表学习方法。我们表明SIMCLR在大多数下游评估任务中表明了对抗性方法和完全监督的方法,并且所有自我监督方法都优于完全监督的方法。这项工作为应用于可穿戴时间级域的对比方法提供了全面的基准,显示了下游临床结果的任务不可知论见的承诺。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
由于标记数据稀缺,提高概括是音频分类中的主要挑战。自我监督的学习(SSL)方法通过利用未标记的数据来学习下游分类任务的有用功能来解决这一点。在这项工作中,我们提出了一个增强的对比SSL框架,以从未标记数据学习不变的表示。我们的方法将各种扰动应用于未标记的输入数据,并利用对比学学习,以便在这种扰动中学习鲁棒性。Audioset和Desed数据集上的实验结果表明,我们的框架显着优于最先进的SSL和Sound / Event分类任务的监督学习方法。
translated by 谷歌翻译
目的:在本文中,我们旨在从大量未标记的脑电图(EEG)信号中学习强大的向量表示,以使学习的表示(1)表现得足以替代睡眠分期任务中的原始信号; (2)在较少的标签和嘈杂样本的情况下,提供了比监督模型更好的预测性能。材料和方法:我们提出了一个自我监督的模型,称为与世界表示形式(Contrawr)相比,用于EEG信号表示学习,该模型使用数据集中的全局统计信息来区分与不同睡眠阶段相关的信号。在包括在家中的三个现实世界EEG数据集上评估了Contrawr模型,这些模型既包括在家中录制设置。结果:Contrawr在三个数据集中的睡眠登台任务上,Moco,Simclr,Byol,Simsiam胜过最新的自我监督学习方法。当可用的培训标签较少时,Contrawr还会击败受监督的学习(例如,标记不到2%的数据时,精度提高了4%)。此外,该模型在2D投影中提供了信息表示。讨论:建议的模型可以推广到其他无监督的生理信号学习任务。未来的方向包括探索特定于任务的数据增强,并将自我监督与监督方法结合起来,这是基于本文自我监督学习的最初成功。结论:我们表明,Contrawr对噪声是强大的,并且可以为下游预测任务提供高质量的EEG表示。在低标签场景(例如,只有2%的数据具有标签),Contrawr的预测能力(例如,睡眠分期准确性提高了4%)比监督的基线要好得多。
translated by 谷歌翻译
我们提出了一种结合时间序列表示学习的专家知识的方法。我们的方法采用专家功能来代替以前的对比学习方法中常用的数据转换。我们这样做是因为时间序列数据经常源于工业或医疗领域,这些工业或医学领域通常可以从域专家那里获得专家功能,而转换通常难以捉摸,对于时间序列数据。我们首先提出了有用的时间序列表示应实现的两个属性,并表明当前的表示学习方法不能确保这些属性。因此,我们设计了Expclr,这是一种基于目标的目标,它利用专家功能来鼓励两种属性来实现学习的代表。最后,我们在三个现实世界中的数据集上演示了ExpCLR超过了无监督和半监督的表示学习的几种最新方法。
translated by 谷歌翻译
近年来,随着深度神经网络方法的普及,手术计算机视觉领域经历了相当大的突破。但是,用于培训的标准全面监督方法需要大量的带注释的数据,从而实现高昂的成本;特别是在临床领域。已经开始在一般计算机视觉社区中获得吸引力的自我监督学习(SSL)方法代表了对这些注释成本的潜在解决方案,从而使仅从未标记的数据中学习有用的表示形式。尽管如此,SSL方法在更复杂和有影响力的领域(例如医学和手术)中的有效性仍然有限且未开发。在这项工作中,我们通过在手术计算机视觉的背景下研究了四种最先进的SSL方法(Moco V2,Simclr,Dino,SWAV),以解决这一关键需求。我们对这些方法在cholec80数据集上的性能进行了广泛的分析,以在手术环境理解,相位识别和工具存在检测中为两个基本和流行的任务。我们检查了它们的参数化,然后在半监督设置中相对于训练数据数量的行为。如本工作所述和进行的那样,将这些方法的正确转移到手术中,可以使SSL的一般用途获得可观的性能 - 相位识别率高达7%,而在工具存在检测方面,则具有20% - 半监督相位识别方法高达14%。该代码将在https://github.com/camma-public/selfsupsurg上提供。
translated by 谷歌翻译
临床12-铅心电图(ECG)是遇到的最广泛的生物信息之一。尽管公共ECG数据集的可用性增加,但标签稀缺仍然是该领域的中央挑战。自我监督的学习代表了缓解这个问题的有希望的方式。在这项工作中,我们提出了从临床12引导ECG数据的自我监督代表学习的第一次全面评估。为此,我们基于对ECG域的实例辨别和潜在预测来适应最先进的自我监督方法。在第一步中,我们基于最近成立,全面的临床ECG分类任务的线性评估性能来学习对比表征并评估其质量。在第二步中,与纯粹监督性能相比,我们分析了自我监督预先训练对Fineetuned ECG分类器的影响。对于最佳性能的方法,对比预测性编码的适应性,我们发现线性评估性能下降低于监督性能的0.5%。对于FineTuned模型,与监督性能,标签效率以及对生理噪声的鲁棒性相比,我们发现下游性能大约1%的下游性能。这项工作明确建立了通过自我监督的学习和众多优势来提取从心电图数据提取歧视性表现的可行性,与纯粹的监督培训相比,在下游任务上的这种代表性上进行了多种优势。作为对其在公开可用的数据集的ECG域中进行的第一次全面评估,我们希望在生物资料中快速发展的代表学习领域建立一个可重复进展的第一步。
translated by 谷歌翻译
受到计算机视觉的自我监督学习的最新进展的启发,在本文中,我们介绍了Delores,这是一种新的通用音频表示方法。我们的主要目标是使我们的网络学习在资源受限的设置(数据和计算)中,可以很好地跨越各种下游任务。受Barlow Twins目标功能的启发,我们建议学习对输入音频样本失真不变的嵌入,同时确保它们包含有关样本的非冗余信息。为此,我们测量了两个相同的网络的输出之间的互相关矩阵,该网络用从音频文件采样的音频段的变形版本中,使其尽可能接近身份矩阵。我们将大规模音频集数据集和FSD50K的一小部分组合用于自学学习,并且与最先进的算法相比,参数的一半不到一半。为了进行评估,我们将这些学习的表示形式转移到9个下游分类任务,包括语音,音乐和动物声音,并在不同的评估设置下显示竞争结果。除了简单明了,我们的预训练算法还可以通过其固有的构造本质来计算,并且不需要仔细的实施细节以避免琐碎或退化的解决方案。此外,我们对结果进行消融研究,并使我们的所有代码和预培训模型公开可用https://github.com/speech-lab-iitm/delores。
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive selfsupervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-ofthe-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100× fewer labels. 1
translated by 谷歌翻译
对图像分类任务的对比学习成功的鼓励,我们为3D手姿势估计的结构化回归任务提出了一种新的自我监督方法。对比学习利用未标记的数据来通过损失制定来使用未标记的数据,以鼓励学习的特征表示在任何图像转换下都是不变的。对于3D手姿势估计,它也希望具有不变性地与诸如颜色抖动的外观变换。但是,该任务需要在仿射和转换之类的转换下的标准性。为了解决这个问题,我们提出了一种对比的对比目标,并在3D手姿势估计的背景下展示其有效性。我们通过实验研究了不变性和对比的对比目标的影响,并表明学习的等待特征导致3D手姿势估计的任务的更好表示。此外,我们显示具有足够深度的标准Evenet,在额外的未标记数据上培训,在弗雷手中获得高达14.5%的提高,因此在没有任何任务的专用架构的情况下实现最先进的性能。 https://ait.ethz.ch/projects/2021/peclr/使用代码和模型
translated by 谷歌翻译
对比度学习是视觉表示学习最成功的方法之一,可以通过在学习的表示上共同执行聚类来进一步提高其性能。但是,现有的联合聚类和对比度学习的方法在长尾数据分布上表现不佳,因为多数班级压倒了少数群体的损失,从而阻止了学习有意义的表示形式。由此激励,我们通过适应偏见的对比损失,以避免群集中的少数群体类别的不平衡数据集来开发一种新颖的联合聚类和对比度学习框架。我们表明,我们提出的修改后的对比损失和分歧聚类损失可改善多个数据集和学习任务的性能。源代码可从https://anonymon.4open.science/r/ssl-debiased-clustering获得
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译