预计机器学习(ML)将在5G边缘计算中发挥重要作用。各种研究已经证明ML非常适合于优化边缘计算系统,因为快速移动性和应用引起的变化发生在边缘。对于ML提供最佳解决方案,重要的是要连续地训练ML模型以包括变化的情景。改变情景(例如,5G基站故障)引起的数据分布的突然变化被称为概念漂移,是持续学习的主要挑战。 ML模型可以在漂移发生的同时呈现高误差率,并且仅在模型学习分布后才会减少错误。在分布式设置中,此问题更加明显,其中多个MAX模型用于不同的异构数据集,最终模型需要捕获所有概念漂移。在本文中,我们表明,在联合学习中使用注意(FL)是处理概念漂移的有效方式。我们使用5G网络流量数据集来模拟概念漂移并测试各种场景。结果表明,注意力可以显着提高FL的概念漂移处理能力。
translated by 谷歌翻译
联合学习是一种新颖的框架,允许多个设备或机构在保留其私有数据时协同地培训机器学习模型。这种分散的方法易于遭受数据统计异质性的后果,无论是在不同的实体还是随着时间的推移,这可能导致缺乏会聚。为避免此类问题,在过去几年中提出了不同的方法。然而,数据可能在许多不同的方式中是异构的,并且当前的建议并不总是确定他们正在考虑的异质性的那种。在这项工作中,我们正式地分类数据统计异质性,并审查能够面对它的最显着的学习策略。与此同时,我们介绍了其他机器学习框架的方法,例如持续学习,也处理数据异质性,并且可以很容易地适应联邦学习设置。
translated by 谷歌翻译
Mobile traffic prediction is of great importance on the path of enabling 5G mobile networks to perform smart and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations on different parties are in demand. Traditional approaches require collecting measurements from different base stations and sending them to a central entity, followed by performing machine learning operations using the received data. The dissemination of local observations raises privacy, confidentiality, and performance concerns, hindering the applicability of machine learning techniques. Various distributed learning methods have been proposed to address this issue, but their application to traffic prediction has yet to be explored. In this work, we study the effectiveness of federated learning applied to raw base station aggregated LTE data for time-series forecasting. We evaluate one-step predictions using 5 different neural network architectures trained with a federated setting on non-iid data. The presented algorithms have been submitted to the Global Federated Traffic Prediction for 5G and Beyond Challenge. Our results show that the learning architectures adapted to the federated setting achieve equivalent prediction error to the centralized setting, pre-processing techniques on base stations lead to higher forecasting accuracy, while state-of-the-art aggregators do not outperform simple approaches.
translated by 谷歌翻译
在私营部门和行业中,每分钟都会创建大量数据。尽管在私人娱乐部门中掌握数据通常很容易,但在工业生产环境中,由于法律,知识产权保存和其他因素,因此更加困难。但是,大多数机器学习方法都需要数量和质量方面足够的数据源。将两个要求融合在一起的一种合适方法是在整个学习进度的情况下联合学习,但每个人仍然是他们数据的所有者。Federate学习首先是Google研究人员在2016年提出的,例如用于改进Google的键盘Gboard。与数十亿个Android用户相反,可比机械仅由少数公司使用。本文研究了哪些其他限制在生产中占上风以及可以考虑哪种联合学习方法。
translated by 谷歌翻译
事实证明,生成的对抗网络是学习复杂且高维数据分布的强大工具,但是已证明诸如模式崩溃之类的问题使他们难以训练它们。当数据分散到联合学习设置中的几个客户端时,这是一个更困难的问题,因为诸如客户端漂移和非IID数据之类的问题使联盟的平均平均值很难收敛。在这项工作中,我们研究了如何在培训数据分散到客户上时如何学习数据分布的任务,无法共享。我们的目标是从集中进行此分配中进行采样,而数据永远不会离开客户。我们使用标准基准图像数据集显示,现有方法在这种设置中失败,当局部时期的局部数量变大时,会经历所谓的客户漂移。因此,我们提出了一种新型的方法,我们称为Effgan:微调联合gans的合奏。作为本地专家发电机的合奏,Effgan能够学习所有客户端的数据分布并减轻客户漂移。它能够用大量的本地时代进行训练,从而使其比以前的作品更有效。
translated by 谷歌翻译
Federated learning is a popular paradigm for machine learning. Ideally, federated learning works best when all clients share a similar data distribution. However, it is not always the case in the real world. Therefore, the topic of federated learning on heterogeneous data has gained more and more effort from both academia and industry. In this project, we first do extensive experiments to show how data skew and quantity skew will affect the performance of state-of-art federated learning algorithms. Then we propose a new algorithm FedMix which adjusts existing federated learning algorithms and we show its performance. We find that existing state-of-art algorithms such as FedProx and FedNova do not have a significant improvement in all testing cases. But by testing the existing and new algorithms, it seems that tweaking the client side is more effective than tweaking the server side.
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译
联合学习是一种在网络边缘训练机器学习模型的方法以及数据隐私问题。这种学习范式需要对设备异质性和数据异质性的鲁棒算法。本文提出MODFL作为联合学习框架,将模型分为配置模块和操作模块,从而实现了各个模块的联合学习。这种模块化方法使从一组异质设备以及用户产生的非IID数据中提取知识。该方法可以看作是通过个性化层FEDPER框架来解决数据异质性的范围的联合学习的扩展。我们表明,使用CNN的MODFL优于CIFAR-10和STL-10的非IID数据分区的FEDPER。我们在使用RNN的Hapt,RWHAR和WISDM数据集的时间序列数据上的结果尚无定论,我们认为所选数据集并未突出MODFL的优势,但在最坏的情况下,它和FedPer一样。
translated by 谷歌翻译
联合学习已被引入新的机器学习范式,以增强本地设备的使用。在服务器级别,FL定期聚集在分布式客户端上本地学习的模型,以获得更通用的模型。这样,没有通过网络发送私人数据,并且降低了通信成本。但是,当前的解决方案依赖于客户端的大量存储数据的可用性,以微调服务器发送的模型。这种设置在移动普遍计算中不现实,在该计算中必须保持数据存储较低,并且数据特征(分布)可能会发生巨大变化。为了解释这种可变性,解决方案是使用客户定期收集的数据来逐步调整接收到的模型。但是这种天真的方法使客户面临着灾难性遗忘的众所周知的问题。本文的目的是在智能手机的移动人类活动识别环境中证明这个问题。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
Federated Learning (FL), as a rapidly evolving privacy-preserving collaborative machine learning paradigm, is a promising approach to enable edge intelligence in the emerging Industrial Metaverse. Even though many successful use cases have proved the feasibility of FL in theory, in the industrial practice of Metaverse, the problems of non-independent and identically distributed (non-i.i.d.) data, learning forgetting caused by streaming industrial data, and scarce communication bandwidth remain key barriers to realize practical FL. Facing the above three challenges simultaneously, this paper presents a high-performance and efficient system named HFEDMS for incorporating practical FL into Industrial Metaverse. HFEDMS reduces data heterogeneity through dynamic grouping and training mode conversion (Dynamic Sequential-to-Parallel Training, STP). Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics and calibrates classifier parameters (Semantic Compression and Compensation, SCC). Finally, the network parameters of the feature extractor and classifier are synchronized in different frequencies (Layer-wiseAlternative Synchronization Protocol, LASP) to reduce communication costs. These techniques make FL more adaptable to the heterogeneous streaming data continuously generated by industrial equipment, and are also more efficient in communication than traditional methods (e.g., Federated Averaging). Extensive experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices. Numerical results show that HFEDMS improves the classification accuracy by at least 6.4% compared with 8 benchmarks and saves both the overall runtime and transfer bytes by up to 98%, proving its superiority in precision and efficiency.
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
由于机器学习(ML)模型变得越来越复杂,其中一个中央挑战是它们在规模的部署,使得公司和组织可以通过人工智能(AI)创造价值。 ML中的新兴范式是一种联合方法,其中学习模型部分地将其交付给一组异构剂,允许代理与自己的数据一起培训模型。然而,模型的估值问题,以及数据/模型的协作培训和交易的激励问题,在文献中获得了有限的待遇。本文提出了一种在基于信任区块基网络上交易的ML模型交易的新生态系统。买方可以获得ML市场的兴趣模型,兴趣的卖家将本地计算花在他们的数据上,以增强该模型的质量。在这样做时,考虑了本地数据与训练型型号的质量之间的比例关系,并且通过分布式数据福价(DSV)估计了销售课程中的训练中的数据的估值。同时,通过分布式分区技术(DLT)提供整个交易过程的可信度。对拟议方法的广泛实验评估显示出具有竞争力的运行时间绩效,在参与者的激励方面下降了15 \%。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
随着无线标准的发展,引入了更复杂的功能,以解决吞吐量,延迟,安全性和效率方面的增加。为了释放此类新功能的潜力,目前正在利用人工智能(AI)和机器学习(ML)(ML)来从数据中得出模型和协议,而不是通过手工编程。在本文中,我们探讨了将ML应用于下一代无线局域网(WLAN)的可行性。更具体地说,我们专注于IEEE 802.11AX空间重用(SR)问题,并通过联合学习(FL)模型来预测其性能。在这项工作中概述的FL解决方案集是2021年国际电信联盟(ITU)AI的5G挑战赛的一部分。
translated by 谷歌翻译
联合学习(FL)以来已提议已应用于许多领域,例如信用评估,医疗等。由于网络或计算资源的差异,客户端可能不会同时更新其渐变可能需要花费等待或闲置的时间。这就是为什么需要异步联合学习(AFL)方法。AFL中的主要瓶颈是沟通。如何在模型性能和通信成本之间找到平衡是AFL的挑战。本文提出了一种新的AFL框架VAFL。我们通过足够的实验验证了算法的性能。实验表明,VAFL可以通过48.23 \%的平均通信压缩速率降低约51.02 \%的通信时间,并允许模型更快地收敛。代码可用于\ url {https://github.com/robai-lab/vafl}
translated by 谷歌翻译
有关连接车辆的高级研究最近针对将车辆到所有设施(V2X)网络与机器学习(ML)工具(ML)工具和分布式决策制定的集成。联合学习(FL)正在作为训练机器学习(ML)模型(包括V2X网络中的车辆)的新范式出现。与其将培训数据共享和上传到服务器,不如将模型参数(例如,神经网络的权重和偏见)更新,由大量的互连车辆种群应用,充当本地学习者。尽管有这些好处,但现有方法的局限性是集中式优化,它依靠服务器来汇总和融合本地参数,从而导致单个故障点和扩展问题的缺点,以增加V2X网络大小。同时,在智能运输方案中,从车载传感器收集的数据是多余的,这会降低聚合的性能。为了解决这些问题,我们探索了一个分散数据处理的新颖想法,并引入了用于网络内工具的联合学习框架,C-DFL(基于共识的分散联盟学习),以解决有关连接车辆的联合学习并提高学习质量的联盟学习。已经实施了广泛的仿真来评估C-DFL的性能,该表明C-DFL在所有情况下都胜过常规方法的性能。
translated by 谷歌翻译