随着无线标准的发展,引入了更复杂的功能,以解决吞吐量,延迟,安全性和效率方面的增加。为了释放此类新功能的潜力,目前正在利用人工智能(AI)和机器学习(ML)(ML)来从数据中得出模型和协议,而不是通过手工编程。在本文中,我们探讨了将ML应用于下一代无线局域网(WLAN)的可行性。更具体地说,我们专注于IEEE 802.11AX空间重用(SR)问题,并通过联合学习(FL)模型来预测其性能。在这项工作中概述的FL解决方案集是2021年国际电信联盟(ITU)AI的5G挑战赛的一部分。
translated by 谷歌翻译
通过参与大规模联合学习(FL)优化的设备的异构性质的激励,我们专注于由区块链(BC)技术赋予的异步服务器的FL解决方案。与主要采用的FL方法相比,假设同步操作,我们提倡一个异步方法,由此,模型聚合作为客户端提交本地更新。异步设置与具有异构客户端的实际大规模设置中的联合优化思路非常适合。因此,它可能导致通信开销和空闲时段的效率提高。为了评估启用了BC启用的FL的学习完成延迟,我们提供了基于批量服务队列理论的分析模型。此外,我们提供仿真结果以评估同步和异步机制的性能。涉及BC启用的流量的重要方面,例如网络大小,链路容量或用户要求,并分析并分析。随着我们的结果表明,同步设置导致比异步案例更高的预测精度。然而,异步联合优化在许多情况下提供了更低的延迟,从而在处理大数据集时成为一种吸引力的FL解决方案,严重的时序约束(例如,近实时应用)或高度不同的训练数据。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联合学习(FL)是标准集中学习范式的最吸引人的替代方案之一,允许异质的设备集训练机器学习模型而无需共享其原始数据。但是,FL需要中央服务器来协调学习过程,从而引入潜在的可扩展性和安全性问题。在文献中,已经提出了诸如八卦联合学习(GFL)和支持区块链的联合学习(BFL)之类的无服务器的方法来减轻这些问题。在这项工作中,我们提出了这三种技术的完整概述,该技术根据整体性能指标进行比较,包括模型准确性,时间复杂性,交流开销,收敛时间和能源消耗。广泛的模拟活动允许进行定量分析。特别是,GFL能够节省18%的训练时间,68%的能源和51%的数据相对于CFL解决方案,但无法达到CFL的准确性水平。另一方面,BFL代表了一个可行的解决方案,用于以更高级别的安全性实施分散的学习,以额外的能源使用和数据共享为代价。最后,我们确定了两个分散的联合学习实施的开放问题,并就该新研究领域的潜在扩展和可能的研究方向提供见解。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
这项工作调查了联合学习的可能性,了解IOT恶意软件检测,并研究该新学习范式固有的安全问题。在此上下文中,呈现了一种使用联合学习来检测影响物联网设备的恶意软件的框架。 n-baiot,一个数据集在由恶意软件影响的几个实际物联网设备的网络流量,已被用于评估所提出的框架。经过培训和评估监督和无监督和无监督的联邦模型(多层Perceptron和AutoEncoder)能够检测到MATEN和UNEEN的IOT设备的恶意软件,并进行了培训和评估。此外,它们的性能与两种传统方法进行了比较。第一个允许每个参与者在本地使用自己的数据局面训练模型,而第二个包括使参与者与负责培训全局模型的中央实体共享他们的数据。这种比较表明,在联合和集中方法中完成的使用更多样化和大数据,对模型性能具有相当大的积极影响。此外,联邦模型,同时保留了参与者的隐私,将类似的结果与集中式相似。作为额外的贡献,并衡量联邦方法的稳健性,已经考虑了具有若干恶意参与者中毒联邦模型的对抗性设置。即使使用单个对手,大多数联邦学习算法中使用的基线模型聚合平均步骤也很容易受到不同攻击的影响。因此,在相同的攻击方案下评估了作为对策的其他模型聚合函数的性能。这些职能对恶意参与者提供了重大改善,但仍然需要更多的努力来使联邦方法强劲。
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
由于机器学习(ML)模型变得越来越复杂,其中一个中央挑战是它们在规模的部署,使得公司和组织可以通过人工智能(AI)创造价值。 ML中的新兴范式是一种联合方法,其中学习模型部分地将其交付给一组异构剂,允许代理与自己的数据一起培训模型。然而,模型的估值问题,以及数据/模型的协作培训和交易的激励问题,在文献中获得了有限的待遇。本文提出了一种在基于信任区块基网络上交易的ML模型交易的新生态系统。买方可以获得ML市场的兴趣模型,兴趣的卖家将本地计算花在他们的数据上,以增强该模型的质量。在这样做时,考虑了本地数据与训练型型号的质量之间的比例关系,并且通过分布式数据福价(DSV)估计了销售课程中的训练中的数据的估值。同时,通过分布式分区技术(DLT)提供整个交易过程的可信度。对拟议方法的广泛实验评估显示出具有竞争力的运行时间绩效,在参与者的激励方面下降了15 \%。
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
基于敏感数据的机器学习模型在现实世界的承诺中,在医学筛查到疾病爆发,农业,工业,国防科学等地区的进步。在许多应用中,学习参与者通信转舍受益于收集自己的私​​有数据集,在真实数据上教导详细的机器学习模型,并共享使用这些模型的好处。由于现有的隐私和安全问题,大多数人都避免敏感数据分享进行培训。如果没有每个用户向中央服务器演示其本地数据,联邦学习允许各方共同地在其共享数据上培训机器学习算法。这种集体隐私学习方法导致培训期间的重要沟通。大多数大型机器学习应用程序需要基于各种设备和地点生成的数据集的分散学习。这样的数据集代表了分散学习的基本障碍,因为它们的各种环境有助于跨设备和位置的数据交付的显着差异。研究人员提出了几种方法来实现联邦学习系统中的数据隐私。但是,仍存在均匀的本地数据仍存在挑战。该研究方法是选择节点(用户)以在联合学习中共享他们的数据,以便为基于独立的数据的平衡来提高准确性,降低培训时间和增加收敛。因此,本研究介绍了基于名为DQRE-SCNet的光谱聚类的组合的深度QREInforceNce学习合奏,以在每个通信中选择设备的子集。基于结果,展示了可以减少联合学习所需的通信轮数量。
translated by 谷歌翻译
联合学习(FL)已成为工业物联网(IIOT)网络中数字双胞胎的必不可少的技术。但是,由于FL的主/奴隶结构,抵制主聚合器的单点失败以及恶意IIOT设备的攻击是非常具有挑战性的,同时保证了模型收敛速度和准确性。最近,区块链已进入FL系统,将范式转换为分散的方式,从而进一步提高了系统的安全性和学习可靠性。不幸的是,由于资源消耗庞大,交易量有限和高度沟通复杂性,区块链系统的传统共识机制和架构几乎无法处理大规模的FL任务并在IIT设备上运行。为了解决这些问题,本文提出了一个两层区块链驱动的FL系统,称为Chainfl,该系统将IIOT网络分为多个碎片,作为限制信息交换的标准层,并采用直接的无循环图(DAG) - 基于主链作为主链层,以实现平行和异步的横断面验证。此外,FL程序是定制的,以与区块链深入集成,并提出了修改的DAG共识机制来减轻由异常模型引起的失真。为了提供概念验证的实施和评估,部署了基于HyperLeDger面料和基于自发DAG的Mainchain的多个子链。广泛的实验结果表明,我们提出的链条系统以可接受和快速的训练效率(最高14%)和更强的鲁棒性(最多3次)优于现有的主要FL系统。
translated by 谷歌翻译
Federated Learning (FL) has become a key choice for distributed machine learning. Initially focused on centralized aggregation, recent works in FL have emphasized greater decentralization to adapt to the highly heterogeneous network edge. Among these, Hierarchical, Device-to-Device and Gossip Federated Learning (HFL, D2DFL \& GFL respectively) can be considered as foundational FL algorithms employing fundamental aggregation strategies. A number of FL algorithms were subsequently proposed employing multiple fundamental aggregation schemes jointly. Existing research, however, subjects the FL algorithms to varied conditions and gauges the performance of these algorithms mainly against Federated Averaging (FedAvg) only. This work consolidates the FL landscape and offers an objective analysis of the major FL algorithms through a comprehensive cross-evaluation for a wide range of operating conditions. In addition to the three foundational FL algorithms, this work also analyzes six derived algorithms. To enable a uniform assessment, a multi-FL framework named FLAGS: Federated Learning AlGorithms Simulation has been developed for rapid configuration of multiple FL algorithms. Our experiments indicate that fully decentralized FL algorithms achieve comparable accuracy under multiple operating conditions, including asynchronous aggregation and the presence of stragglers. Furthermore, decentralized FL can also operate in noisy environments and with a comparably higher local update rate. However, the impact of extremely skewed data distributions on decentralized FL is much more adverse than on centralized variants. The results indicate that it may not be necessary to restrict the devices to a single FL algorithm; rather, multi-FL nodes may operate with greater efficiency.
translated by 谷歌翻译
Mobile traffic prediction is of great importance on the path of enabling 5G mobile networks to perform smart and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations on different parties are in demand. Traditional approaches require collecting measurements from different base stations and sending them to a central entity, followed by performing machine learning operations using the received data. The dissemination of local observations raises privacy, confidentiality, and performance concerns, hindering the applicability of machine learning techniques. Various distributed learning methods have been proposed to address this issue, but their application to traffic prediction has yet to be explored. In this work, we study the effectiveness of federated learning applied to raw base station aggregated LTE data for time-series forecasting. We evaluate one-step predictions using 5 different neural network architectures trained with a federated setting on non-iid data. The presented algorithms have been submitted to the Global Federated Traffic Prediction for 5G and Beyond Challenge. Our results show that the learning architectures adapted to the federated setting achieve equivalent prediction error to the centralized setting, pre-processing techniques on base stations lead to higher forecasting accuracy, while state-of-the-art aggregators do not outperform simple approaches.
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译