软件通常会产生偏置输出。特别地,已知基于机器学习(ML)软件在处理鉴别的输入时产生错误的预测。这种不公平的计划行为可能是由社会偏见引起的。在过去的几年里,亚马逊,微软和谷歌已经提供了产生不公平产出的软件服务,主要是由于社会偏见(例如性别或比赛)。在此类事件中,开发人员被绑定了进行公平测试的任务。公平性测试是挑战性的;开发人员任务是产生揭示和解释偏见的歧视性投入。我们提出了一种基于语法的公平测试方法(称为Astraea),它利用无与伦比的语法来产生歧视性投入,以揭示软件系统中的公平违规行为。 Astraea使用概率语法,Astraea还通过隔离观察到的软件偏差原因提供故障诊断。 Astraea的诊断有助于改善ML公平性。 Astraea是在18个软件系统上进行评估,提供三种主要的自然语言处理(NLP)服务。在我们的评估中,Astraea产生了公平违规,率达到约18%。 Astraea产生了超过573K的歧视性测试案例,并违反了102k的公平性。此外,Astraea通过模型再培训将软件公平提高〜76%。
translated by 谷歌翻译
Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.
translated by 谷歌翻译
语言可以用作再现和执行有害刻板印象和偏差的手段,并被分析在许多研究中。在本文中,我们对自然语言处理中的性别偏见进行了304篇论文。我们分析了社会科学中性别及其类别的定义,并将其连接到NLP研究中性别偏见的正式定义。我们调查了在对性别偏见的研究中应用的Lexica和数据集,然后比较和对比方法来检测和减轻性别偏见。我们发现对性别偏见的研究遭受了四个核心限制。 1)大多数研究将性别视为忽视其流动性和连续性的二元变量。 2)大部分工作都在单机设置中进行英语或其他高资源语言进行。 3)尽管在NLP方法中对性别偏见进行了无数的论文,但我们发现大多数新开发的算法都没有测试他们的偏见模型,并无视他们的工作的伦理考虑。 4)最后,在这一研究线上发展的方法基本缺陷涵盖性别偏差的非常有限的定义,缺乏评估基线和管道。我们建议建议克服这些限制作为未来研究的指导。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
自动语音识别(ASR)系统已变得无处不在。它们可以在各种形状因素中找到,在我们的日常生活中越来越重要。因此,确保这些系统公平地与人口的不同亚组是至关重要的。在本文中,我们介绍,AeChevox是评估ASR系统的公平性的自动化测试框架。 Aequevox模拟不同的环境,以评估ASR系统对不同群体的有效性。此外,我们还调查所选择的模拟是否可易于对人类易于理解。我们进一步提出了一种故障定位技术,能够识别对这些不同环境不稳健的单词。 Aequevox的两个组件都能够在没有地面真理数据的情况下运行。我们使用三个不同的商业ASR评估了来自四个不同数据集的equevox。我们的实验表明,非母语,女性和尼日利亚语扬声器分别产生109%,528.5%和156.9%,平均分别比母语,男性和英国米德兰斯扬声器更多。我们的用户学习还揭示了82.9%的模拟(通过语音转换采用)的可理解性评级高于七(十分之一),评级最低为6.78。这进一步验证了AeChevox发现的公平违规行为。最后,我们展示了非强大的单词,如eApevox中体现的故障定位技术所预测的,显示出的错误,而不是所有ASR的预测强大的单词。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
基于变压器的语言模型最近在许多自然语言任务中取得了显着的结果。但是,通常通过利用大量培训数据来实现排行榜的性能,并且很少通过将明确的语言知识编码为神经模型。这使许多人质疑语言学对现代自然语言处理的相关性。在本文中,我介绍了几个案例研究,以说明理论语言学和神经语言模型仍然相互关联。首先,语言模型通过提供一个客观的工具来测量语义距离,这对语言学家很有用,语义距离很难使用传统方法。另一方面,语言理论通过提供框架和数据源来探究我们的语言模型,以了解语言理解的特定方面,从而有助于语言建模研究。本论文贡献了三项研究,探讨了语言模型中语法 - 听觉界面的不同方面。在论文的第一部分中,我将语言模型应用于单词类灵活性的问题。我将Mbert作为语义距离测量的来源,我提供了有利于将单词类灵活性分析为方向过程的证据。在论文的第二部分中,我提出了一种方法来测量语言模型中间层的惊奇方法。我的实验表明,包含形态句法异常的句子触发了语言模型早期的惊喜,而不是语义和常识异常。最后,在论文的第三部分中,我适应了一些心理语言学研究,以表明语言模型包含了论证结构结构的知识。总而言之,我的论文在自然语言处理,语言理论和心理语言学之间建立了新的联系,以为语言模型的解释提供新的观点。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
背景:机器学习(ML)可以实现有效的自动测试生成。目的:我们表征了新兴研究,检查测试实践,研究人员目标,应用的ML技术,评估和挑战。方法:我们对97个出版物的样本进行系统文献综述。结果:ML生成系统,GUI,单位,性能和组合测试的输入或改善现有生成方法的性能。 ML还用于生成测试判决,基于属性的和预期的输出序列。经常基于神经网络和强化学习的监督学习通常是基于Q学习的 - 很普遍,并且某些出版物还采用了无监督或半监督的学习。使用传统的测试指标和与ML相关的指标(例如准确性)评估(半/非 - )监督方法,而经常使用与奖励功能相关的测试指标来评估强化学习。结论:工作到尽头表现出巨大的希望,但是在培训数据,再探术,可伸缩性,评估复杂性,所采用的ML算法以及如何应用 - 基准和可复制性方面存在公开挑战。我们的发现可以作为该领域研究人员的路线图和灵感。
translated by 谷歌翻译
可解释的人工智能(XAI)中方法的动机通常包括检测,量化和缓解偏见,并为使机器学习模型更加公平而做出贡献。但是,确切的XAI方法可以如何帮助打击偏见。在本文中,我们简要回顾了NLP研究中的解释性和公平性的趋势,确定了当前的实践,其中采用了解释性方法来检测和减轻偏见,并调查了阻止XAI方法在解决公平问题中更广泛使用的障碍。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
在许多机器学习应用中已经显示了歧视,该应用程序要求在与道德相关的领域(例如面部识别,医学诊断和刑事判决)中部署之前进行足够的公平测试。现有的公平测试方法主要设计用于识别个人歧视,即对个人的歧视。然而,作为另一种广泛的歧视类型,对群体歧视(大多数隐藏)的测试却少得多。为了解决差距,在这项工作中,我们提出了测试,一种可解释的测试方法,它系统地识别和措施隐藏了一个神经网络的隐藏(我们称为“微妙”群体歧视},该神经网络的特征是敏感特征的条件。一个神经网络,TestsgDFirst自动生成可解释的规则集,该规则集将输入空间分为两组,以暴露模型的组歧视。鉴于,Testsgdalso提供了基于对输入空间进行采样的估计组公平得分,以衡量确定的SIXTEL组歧视程度,这可以确保准确地达到错误的限制。我们评估了在包括结构化数据和文本数据在内的流行数据集中训练的测试多个神经网络模型。实验结果表明,测试有效地有效地识别和测量了如此微妙的群体歧视,以至于该测试效率以前从未透露过。矿石,我们表明,测试的测试结果指南生成新样品的测试结果,以通过可忽略不计的准确性下降来减轻这种歧视。
translated by 谷歌翻译
最近的自然语言处理(NLP)技术在基准数据集中实现了高性能,主要原因是由于深度学习性能的显着改善。研究界的进步导致了最先进的NLP任务的生产系统的巨大增强,例如虚拟助理,语音识别和情感分析。然而,随着对抗性攻击测试时,这种NLP系统仍然仍然失败。初始缺乏稳健性暴露于当前模型的语言理解能力中的令人不安的差距,当NLP系统部署在现实生活中时,会产生问题。在本文中,我们通过以各种维度的系统方式概述文献来展示了NLP稳健性研究的结构化概述。然后,我们深入了解稳健性的各种维度,跨技术,指标,嵌入和基准。最后,我们认为,鲁棒性应该是多维的,提供对当前研究的见解,确定文学中的差距,以建议值得追求这些差距的方向。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译
机器学习模型在高赌注应用中变得普遍存在。尽管在绩效方面有明显的效益,但该模型可以表现出对少数民族群体的偏见,并导致决策过程中的公平问题,导致对个人和社会的严重负面影响。近年来,已经开发了各种技术来减轻机器学习模型的偏差。其中,加工方法已经增加了社区的关注,在模型设计期间直接考虑公平,以诱导本质上公平的模型,从根本上减轻了产出和陈述中的公平问题。在本调查中,我们审查了加工偏置减缓技术的当前进展。基于在模型中实现公平的地方,我们将它们分类为明确和隐性的方法,前者直接在培训目标中纳入公平度量,后者重点介绍精炼潜在代表学习。最后,我们在讨论该社区中的研究挑战来讨论调查,以激励未来的探索。
translated by 谷歌翻译
软件2.0是软件工程的根本班次,机器学习成为新软件,由大数据和计算基础设施供电。因此,需要重新考虑软件工程,其中数据成为与代码相提并论的一流公民。一个引人注目的观察是,80-90%的机器学习过程都花在数据准备上。没有良好的数据,即使是最好的机器学习算法也不能表现良好。结果,以数据为中心的AI实践现在成为主流。不幸的是,现实世界中的许多数据集是小,肮脏,偏见,甚至中毒。在本调查中,我们研究了数据收集和数据质量的研究景观,主要用于深度学习应用。数据收集很重要,因为对于最近的深度学习方法,功能工程较小,而且需要大量数据。对于数据质量,我们研究数据验证和数据清洁技术。即使数据无法完全清洁,我们仍然可以应对模型培训期间的不完美数据,其中使用鲁棒模型培训技术。此外,虽然在传统数据管理研究中较少研究偏见和公平性,但这些问题成为现代机器学习应用中的重要主题。因此,我们研究了可以在模型培训之前,期间或之后应用的公平措施和不公平的缓解技术。我们相信数据管理界很好地解决了这些方向上的问题。
translated by 谷歌翻译
Advocates of algorithmic techniques like data mining argue that these techniques eliminate human biases from the decision-making process. But an algorithm is only as good as the data it works with. Data is frequently imperfect in ways that allow these algorithms to inherit the prejudices of prior decision makers. In other cases, data may simply reflect the widespread biases that persist in society at large. In still others, data mining can discover surprisingly useful regularities that are really just preexisting patterns of exclusion and inequality. Unthinking reliance on data mining can deny historically disadvantaged and vulnerable groups full participation in society. Worse still, because the resulting discrimination is almost always an unintentional emergent property of the algorithm's use rather than a conscious choice by its programmers, it can be unusually hard to identify the source of the problem or to explain it to a court. This Essay examines these concerns through the lens of American antidiscrimination law-more particularly, through Title
translated by 谷歌翻译