今天消费者提供的各种数字付款选择是过去十年的电子商务交易的关键驱动因素。不幸的是,这也升起了网络犯罪分子和欺诈者,通过部署日益复杂的欺诈攻击,在这些系统中不断寻找漏洞。典型的欺诈检测系统采用标准的监督学习方法,重点是最大化欺诈召回率。但是,我们认为这种配方可以导致次优的解决方案。这些欺诈型号的设计要求要求它们对数据中的高级不平衡具有强大,适应欺诈模式的变化,维持欺诈率与下降率之间的平衡,以最大限度地提高收入,并可均可用于异步反馈由于通常在交易和欺诈意识之间存在显着的滞后。为实现这一目标,我们将欺诈检测作为奖励功能中模型内的实用性最大化作为顺序决策问题。历史下降率和欺诈率定义了由批准或拒绝交易的二进制动作空间的系统状态。在这项研究中,我们主要关注实用的最大化并探索此目的不同的奖励功能。已经使用深度Q-Learning进行了两种公开的欺诈数据集,并与不同的分类器相比,已经评估了拟议的欺诈数据集。我们的目标是在未来的工作中解决其余问题。
translated by 谷歌翻译
新一代网络威胁的兴起要求更复杂和智能的网络防御解决方案,配备了能够学习在没有人力专家知识的情况下做出决策的自治代理。近年来提出了用于自动网络入侵任务的几种强化学习方法(例如,马尔可夫)。在本文中,我们介绍了一种新一代的网络入侵检测方法,将基于Q学习的增强学习与用于网络入侵检测的深馈前神经网络方法相结合。我们提出的深度Q-Learning(DQL)模型为网络环境提供了正在进行的自动学习能力,该网络环境可以使用自动试验误差方法检测不同类型的网络入侵,并连续增强其检测能力。我们提供涉及DQL模型的微调不同的超参数的细节,以获得更有效的自学。根据我们基于NSL-KDD数据集的广泛实验结果,我们确认折扣因子在250次训练中设定为0.001,产生了最佳的性能结果。我们的实验结果还表明,我们所提出的DQL在检测不同的入侵课程和优于其他类似的机器学习方法方面的高度有效。
translated by 谷歌翻译
本文介绍了用于交易单一资产的双重Q网络算法,即E-MINI S&P 500连续期货合约。我们使用经过验证的设置作为我们环境的基础,并具有多个扩展。我们的贸易代理商的功能不断扩展,包括其他资产,例如商品,从而产生了四种型号。我们还应对环境条件,包括成本和危机。我们的贸易代理商首先接受了特定时间段的培训,并根据新数据进行了测试,并将其与长期策略(市场)进行了比较。我们分析了各种模型与样本中/样本外性能之间有关环境的差异。实验结果表明,贸易代理人遵循适当的行为。它可以将其政策调整为不同的情况,例如在存在交易成本时更广泛地使用中性位置。此外,净资产价值超过了基准的净值,代理商在测试集中的市场优于市场。我们使用DDQN算法对代理商在金融领域中的行为提供初步见解。这项研究的结果可用于进一步发展。
translated by 谷歌翻译
具有成本效益的资产管理是多个行业的兴趣领域。具体而言,本文开发了深入的加固学习(DRL)解决方案,以自动确定不断恶化的水管的最佳康复政策。我们在在线和离线DRL设置中处理康复计划的问题。在在线DRL中,代理与具有不同长度,材料和故障率特征的多个管道的模拟环境进行交互。我们使用深Q学习(DQN)训练代理商,以最低限度的平均成本和减少故障概率学习最佳政策。在离线学习中,代理使用静态数据,例如DQN重播数据,通过保守的Q学习算法学习最佳策略,而无需与环境进行进一步的交互。我们证明,基于DRL的政策改善了标准预防,纠正和贪婪的计划替代方案。此外,从固定的DQN重播数据集中学习超过在线DQN设置。结果保证,由大型国家和行动轨迹组成的水管的现有恶化概况为在离线环境中学习康复政策提供了宝贵的途径,而无需模拟器。
translated by 谷歌翻译
在这项工作中,我们提出并评估了一种新的增强学习方法,紧凑体验重放(编者),它使用基于相似转换集的复发的预测目标值的时间差异学习,以及基于两个转换的经验重放的新方法记忆。我们的目标是减少在长期累计累计奖励的经纪人培训所需的经验。它与强化学习的相关性与少量观察结果有关,即它需要实现类似于文献中的相关方法获得的结果,这通常需要数百万视频框架来培训ATARI 2600游戏。我们举报了在八个挑战街机学习环境(ALE)挑战游戏中,为仅10万帧的培训试验和大约25,000次迭代的培训试验中报告了培训试验。我们还在与基线的同一游戏中具有相同的实验协议的DQN代理呈现结果。为了验证从较少数量的观察结果近似于良好的政策,我们还将其结果与从啤酒的基准上呈现的数百万帧中获得的结果进行比较。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
强化学习(RL)为解决各种复杂的决策任务提供了新的机会。但是,现代的RL算法,例如,深Q学习是基于深层神经网络,在Edge设备上运行时的计算成本很高。在本文中,我们提出了QHD,一种高度增强的学习,它模仿了大脑特性,以实现健壮和实时学习。 QHD依靠轻巧的大脑启发模型来学习未知环境中的最佳政策。我们首先建立一个新颖的数学基础和编码模块,该模块将状态行动空间映射到高维空间中。因此,我们开发了一个高维回归模型,以近似Q值函数。 QHD驱动的代理通过比较每个可能动作的Q值来做出决定。我们评估了不同的RL培训批量和本地记忆能力对QHD学习质量的影响。我们的QHD也能够以微小的本地记忆能力在线学习,这与培训批量大小一样小。 QHD通过进一步降低记忆容量和批处理大小来提供实时学习。这使得QHD适用于在边缘环境中高效的增强学习,这对于支持在线和实时学习至关重要。我们的解决方案还支持少量的重播批量大小,与DQN相比,该批量的速度为12.3倍,同时确保质量损失最小。我们的评估显示了实时学习的QHD能力,比最先进的Deep RL算法提供了34.6倍的速度和更高的学习质量。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
半监督异常检测(AD)是一种数据挖掘任务,旨在从部分标记的数据集中学习功能,以帮助检测异常值。在本文中,我们将现有的半监督AD方法分为两类:无监督和基于监督的基于监督的,并指出其中大多数人对标记数据的利用不足和未经标记的数据的探索不足。为了解决这些问题,我们提出了深度的异常检测和搜索(DADS),该检测(DADS)应用了增强学习(RL)以平衡剥削和探索。在培训过程中,代理商通过层次结构的数据集搜索可能的异常情况,并使用搜索异常来增强性能,从本质上讲,这本质上从合奏学习的想法中汲取了教训。在实验上,我们将DAD与利用标记已知异常的标记为检测其他已知异常和未知异常的几种最新方法进行了比较。结果表明,爸爸可以从未标记的数据中有效,精确地搜索异常,并向它们学习,从而实现良好的性能。
translated by 谷歌翻译
当预测不久的将来的环境中的要素状态时,Endley情况意识模型的最高级别称为投影。在网络安全状况的意识中,对高级持续威胁(APT)的投影需要预测APT的下一步。威胁正在不断变化,变得越来越复杂。由于受监督和无监督的学习方法需要APT数据集​​来投影APT的下一步,因此他们无法识别未知的APT威胁。在强化学习方法中,代理与环境相互作用,因此它可能会投射出已知和未知APT的下一步。到目前为止,尚未使用强化学习来计划APTS的下一步。在强化学习中,代理商使用先前的状态和行动来近似当前状态的最佳动作。当状态和行动的数量丰富时,代理人采用神经网络,该网络被称为深度学习来近似每个州的最佳动作。在本文中,我们提出了一个深厚的加固学习系统,以预测APT的下一步。随着攻击步骤之间的某种关系,我们采用长期短期记忆(LSTM)方法来近似每个状态的最佳动作。在我们提出的系统中,根据当前情况,我们将投影APT威胁的下一步。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
In this paper, we build on advances introduced by the Deep Q-Networks (DQN) approach to extend the multi-objective tabular Reinforcement Learning (RL) algorithm W-learning to large state spaces. W-learning algorithm can naturally solve the competition between multiple single policies in multi-objective environments. However, the tabular version does not scale well to environments with large state spaces. To address this issue, we replace underlying Q-tables with DQN, and propose an addition of W-Networks, as a replacement for tabular weights (W) representations. We evaluate the resulting Deep W-Networks (DWN) approach in two widely-accepted multi-objective RL benchmarks: deep sea treasure and multi-objective mountain car. We show that DWN solves the competition between multiple policies while outperforming the baseline in the form of a DQN solution. Additionally, we demonstrate that the proposed algorithm can find the Pareto front in both tested environments.
translated by 谷歌翻译
我们利用离线增强学习(RL)模型在现实世界中有预算限制的情况下进行连续的目标促销。在我们的应用程序中,移动应用程序旨在通过向客户发送现金奖金并在每个时间段内控制此类现金奖金的成本来促进客户保留。为了实现多任务目标,我们提出了预算限制的加强学习,以进行顺序促销(BCRLSP)框架,以确定要发送给用户的现金奖金的价值。我们首先找出目标策略和相关的Q值,这些Q值是使用RL模型最大化用户保留率的。然后添加线性编程(LP)模型以满足促销成本的限制。我们通过最大化从RL模型中汲取的动作的Q值来解决LP问题。在部署期间,我们将离线RL模型与LP模型相结合,以在预算约束下生成强大的策略。使用在线和离线实验,我们通过证明BCRLSP达到的长期客户保留率和比各种基线更低的成本来证明我们方法的功效。利用近乎实时的成本控制方法,提出的框架可以轻松地使用嘈杂的行为政策和/或满足灵活的预算约束。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
Amazon and other e-commerce sites must employ mechanisms to protect their millions of customers from fraud, such as unauthorized use of credit cards. One such mechanism is order fraud evaluation, where systems evaluate orders for fraud risk, and either "pass" the order, or take an action to mitigate high risk. Order fraud evaluation systems typically use binary classification models that distinguish fraudulent and legitimate orders, to assess risk and take action. We seek to devise a system that considers both financial losses of fraud and long-term customer satisfaction, which may be impaired when incorrect actions are applied to legitimate customers. We propose that taking actions to optimize long-term impact can be formulated as a Reinforcement Learning (RL) problem. Standard RL methods require online interaction with an environment to learn, but this is not desirable in high-stakes applications like order fraud evaluation. Offline RL algorithms learn from logged data collected from the environment, without the need for online interaction, making them suitable for our use case. We show that offline RL methods outperform traditional binary classification solutions in SimStore, a simplified e-commerce simulation that incorporates order fraud risk. We also propose a novel approach to training offline RL policies that adds a new loss term during training, to better align policy exploration with taking correct actions.
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
移动通知系统在各种应用程序中起着重要作用,以通信,向用户发送警报和提醒,以告知他们有关新闻,事件或消息的信息。在本文中,我们将近实时的通知决策问题制定为马尔可夫决策过程,在该过程中,我们对奖励中的多个目标进行了优化。我们提出了一个端到端的离线增强学习框架,以优化顺序通知决策。我们使用基于保守的Q学习的双重Q网络方法来应对离线学习的挑战,从而减轻了分配转移问题和Q值高估。我们说明了完全部署的系统,并通过离线和在线实验证明了拟议方法的性能和好处。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
A central problem in computational biophysics is protein structure prediction, i.e., finding the optimal folding of a given amino acid sequence. This problem has been studied in a classical abstract model, the HP model, where the protein is modeled as a sequence of H (hydrophobic) and P (polar) amino acids on a lattice. The objective is to find conformations maximizing H-H contacts. It is known that even in this reduced setting, the problem is intractable (NP-hard). In this work, we apply deep reinforcement learning (DRL) to the two-dimensional HP model. We can obtain the conformations of best known energies for benchmark HP sequences with lengths from 20 to 50. Our DRL is based on a deep Q-network (DQN). We find that a DQN based on long short-term memory (LSTM) architecture greatly enhances the RL learning ability and significantly improves the search process. DRL can sample the state space efficiently, without the need of manual heuristics. Experimentally we show that it can find multiple distinct best-known solutions per trial. This study demonstrates the effectiveness of deep reinforcement learning in the HP model for protein folding.
translated by 谷歌翻译
自早期以来,针对病毒的疫苗一直是小时的需求。但是,很难(准时)将疫苗有效地分配给一个国家的所有角落,尤其是在大流行期间。考虑到人口的广泛,多元化的社区以及智慧社会的需求,有效地在任何国家/国家中优化疫苗分配策略是一项重要任务。尽管各种疫苗管理站点的数据(大数据)大量可以开采,以获得有关大规模疫苗接种驱动器的宝贵见解,但很少有尝试彻底改变传统的大规模疫苗接种运动来减轻社会经济危机大流行国家。在本文中,我们在研究和实验中弥合了这一差距。我们收集公开可用的每日疫苗接种数据,并仔细分析以产生意义上的见解和预测。我们提出了一个新颖的框架,利用了我们称为疫苗的监督学习和强化学习(RL),该学习能够学习一个国家状态下预测疫苗接种的需求,并建议该州的最佳疫苗分配以最低成本采购和供应。目前,我们的框架接受了美国疫苗接种数据的训练和测试。
translated by 谷歌翻译