增加光伏(PV)工厂的部署需要在模态中自动检测故障PV模块,例如红外(IR)图像。最近,深入学习已经为此受欢迎。然而,相关的作品通常是来自相同分布的样本列车和测试数据忽略不同光伏工厂数据之间的域移位的存在。相反,我们将故障检测视为更现实无监督的域适应问题,我们在训练一个源PV工厂的标记数据并在另一个目标工厂进行预测。我们培训具有监督对比损失的Reset-34卷积神经网络,在其中我们采用K-Collect Exband Classifier来检测异常。我们的方法在接收器下实现令人满意的区域(Auroc),在九个源和目标数据集的九种组合中的达到73.3%至96.6%,其中8.5%的8.5%是异常的。在某些情况下,它甚至优于二进制交叉熵分类器。固定决策阈值,这导致79.4%和77.1%分别正确分类正常和异常图像。大多数错误分类的异常具有低严重程度,例如热二极管和小型热点。我们的方法对封锁率设置不敏感,汇聚快速并可靠地检测未知类型的异常,使其适合实践。可能的用途是自动PV工厂检测系统或通过过滤普通图像来简化IR数据集的手动标记。此外,我们的工作为使用无监督域适应的PV模块故障检测提供了更现实的观点,以开发具有有利的概括功能的更加性能的方法。
translated by 谷歌翻译
现代工业设施在生产过程中生成大量的原始传感器数据。该数据用于监视和控制过程,可以分析以检测和预测过程异常。通常,数据必须由专家注释,以进一步用于预测建模。当今的大多数研究都集中在需要手动注释数据的无监督异常检测算法或监督方法上。这些研究通常是使用过程模拟器生成的狭窄事件类别的数据进行的,并且在公开可用的数据集上很少验证建议的算法。在本文中,我们提出了一种新型的方法,用于用于工业化学传感器数据的无监督故障检测和诊断。我们根据具有各种故障类型的田纳西州伊士曼进程的两个公开数据集证明了我们的模型性能。结果表明,我们的方法显着优于现有方法(固定FPR的+0.2-0.3 TPR),并在不使用专家注释的情况下检测大多数过程故障。此外,我们进行了实验,以证明我们的方法适用于未提前不知道故障类型数量的现实世界应用。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
我们介绍了一个简单而直观的自我实施任务,自然合成异常(NSA),用于训练仅使用正常培训数据的端到端模型,以实现异常检测和定位。NSA将Poisson图像编辑整合到来自单独图像的各种尺寸的无缝混合缩放贴片。这会产生广泛的合成异常,与以前的自我监督异常检测的数据 - 启发策略相比,它们更像自然的子图像不规则。我们使用天然和医学图像评估提出的方法。我们对MVTEC AD数据集进行的实验表明,经过训练的用于本地NSA异常的模型可以很好地概括地检测现实世界中的先验未知类型的制造缺陷。我们的方法实现了97.2的总检测AUROC,优于所有以前的方法,这些方法在不使用其他数据集的情况下学习。可在https://github.com/hmsch/natural-synthetic-anomalies上获得代码。
translated by 谷歌翻译
异常检测方法努力以语义方式发现与规范不同的模式。这个目标是模棱两可的,因为数据点与规范不同的属性不同,例如年龄,种族或性别,可能被某些操作员认为是异常的,而其他操作员可能认为这种属性无关紧要。从先前的研究中断,我们提出了一种新的异常检测方法,该方法使操作员可以将属性排除在被认为与异常检测相关的情况下。然后,我们的方法学习了不包含有关滋扰属性的信息的表示形式。使用基于密度的方法进行异常评分。重要的是,我们的方法不需要指定与检测异常相关的属性,这在异常检测中通常是不可能的,而是只能忽略的属性。提出了一项实证研究,以验证我们方法的有效性。
translated by 谷歌翻译
我们介绍了多变量时间序列中异常检测问题的新型,实际相关的变化:内在的异常检测。它出现在从DevOps到IoT的各种实践场景中,我们想认识到在周围环境影响下运行的系统的故障。固有的异常是时间序列之间的功能依赖性结构的变化,该时间序列代表代表所述环境中系统内部状态的环境和时间序列。我们将此问题形式化,为其提供了不足的公共和新的专用数据集,并提供了处理内在异常检测的方法。这些解决了无法区分系统状态的预期变化和意外情况的现有异常检测方法的缩写,即,偏离环境影响的系统的变化。我们最有前途的方法是完全无监督的,并结合了对抗性学习和时间序列表示学习,从而解决了标签稀疏性和主观性等问题,同时允许导航并改善臭名昭著的有问题的异常检测数据集。
translated by 谷歌翻译
异常检测是要识别在某些方面与训练观察结果不同的样本。这些不符合正常数据分布的样本称为异常值或异常。在现实世界的异常检测问题中,离群值不存在,定义不当或实例非常有限。最近的最新基于深度学习的异常检测方法遭受了高计算成本,复杂性,不稳定的培训程序和非平凡的实施,因此它们很难在现实世界应用中部署。为了解决这个问题,我们利用一个简单的学习程序来训练轻量级的卷积神经网络,在异常检测中达到最先进的表现。在本文中,我们建议将异常检测作为监督回归问题。我们使用连续值的两个可分离分布标记正常和异常数据。为了补偿训练时间中异常样品的不可用,我们利用直接图像增强技术来创建一组不同的样本作为异常。增强集的分布相似,但与正常数据略有偏差,而实际异常将具有进一步的分布。因此,对这些增强样品的训练回归器将导致标签的分布更加可分离,以适应正常和真实的异常数据点。图像和视频数据集的异常检测实验显示了所提出的方法比最新方法的优越性。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
Deep anomaly detection methods learn representations that separate between normal and anomalous images. Although self-supervised representation learning is commonly used, small dataset sizes limit its effectiveness. It was previously shown that utilizing external, generic datasets (e.g. ImageNet classification) can significantly improve anomaly detection performance. One approach is outlier exposure, which fails when the external datasets do not resemble the anomalies. We take the approach of transferring representations pre-trained on external datasets for anomaly detection. Anomaly detection performance can be significantly improved by fine-tuning the pre-trained representations on the normal training images. In this paper, we first demonstrate and analyze that contrastive learning, the most popular self-supervised learning paradigm cannot be naively applied to pre-trained features. The reason is that pre-trained feature initialization causes poor conditioning for standard contrastive objectives, resulting in bad optimization dynamics. Based on our analysis, we provide a modified contrastive objective, the Mean-Shifted Contrastive Loss. Our method is highly effective and achieves a new state-of-the-art anomaly detection performance including $98.6\%$ ROC-AUC on the CIFAR-10 dataset.
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
异常检测方法识别偏离数据集的正常行为的样本。它通常用于训练集,其中包含来自多个标记类或单个未标记的类的普通数据。当前方法面对培训数据时争取多个类但没有标签。在这项工作中,我们首先发现自我监督的图像聚类方法学习的分类器为未标记的多级数据集上的异常检测提供了强大的基线。也许令人惊讶的是,我们发现初始化具有预先训练功能的聚类方法并不能改善其自我监督的对应物。这是由于灾难性遗忘的现象。相反,我们建议了两级方法。我们使用自我监督方法群集图像并为每个图像获取群集标签。我们使用群集标签作为“伪监督”,用于分销(OOD)方法。具体而言,我们通过群集标签对图像进行分类的任务进行预训练功能。我们提供了我们对方法的广泛分析,并展示了我们两级方法的必要性。我们评估符合最先进的自我监督和预用方法,并表现出卓越的性能。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph using auxiliary, related source graphs with labelled anomalous and normal nodes. Although it presents a promising approach to address the notoriously high false positive issue in anomaly detection, little work has been done in this line of research. There are numerous domain adaptation methods in the literature, but it is difficult to adapt them for GAD due to the unknown distributions of the anomalies and the complex node relations embedded in graph data. To this end, we introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT), for GAD. ACT is designed to jointly optimise: (i) unsupervised contrastive learning of normal representations of nodes in the target graph, and (ii) anomaly-aware one-class alignment that aligns these contrastive node representations and the representations of labelled normal nodes in the source graph, while enforcing significant deviation of the representations of the normal nodes from the labelled anomalous nodes in the source graph. In doing so, ACT effectively transfers anomaly-informed knowledge from the source graph to learn the complex node relations of the normal class for GAD on the target graph without any specification of the anomaly distributions. Extensive experiments on eight CD-GAD settings demonstrate that our approach ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods. Code is available at https://github.com/QZ-WANG/ACT.
translated by 谷歌翻译
视觉异常检测通常用于工业质量检查。在本文中,我们提出了一个新的数据集以及一种新的自我监督学习方法,用于ImageNet预训练,以改善1级和2级和2级5/10/高光训练设置的异常检测和细分。我们释放视觉异常(Visa)数据集,该数据集由10,821个高分辨率颜色图像(9,621个正常和1200个异常样品)组成,涵盖了3个域中的12个对象,使其成为迄今为止最大的工业异常检测数据集。提供了图像和像素级标签。我们还提出了一个新的自我监督框架 - 斑点差异(SPD),该框架可以使对比度的自我监督预训练(例如Simsiam,Moco和Simc​​lr)更适合异常检测任务。我们在Visa和MVTEC-AD数据集上进行的实验表明,SPD始终改善这些对比的训练前基准,甚至是受监督的预训练。例如,SPD在Precision-Recall曲线(AU-PR)下改善了SIMSIAM比SIMSIAM的异常分割的面积,分别为6.8%,并分别监督了2级高弹药机制的预训练。我们通过http://github.com/amazon-research/spot-diff开放项目。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
We aim at constructing a high performance model for defect detection that detects unknown anomalous patterns of an image without anomalous data. To this end, we propose a two-stage framework for building anomaly detectors using normal training data only. We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations. We learn representations by classifying normal data from the CutPaste, a simple data augmentation strategy that cuts an image patch and pastes at a random location of a large image. Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects. We bring the improvement upon previous arts by 3.1 AUCs when learning representations from scratch. By transfer learning on pretrained representations on ImageNet, we achieve a new state-of-theart 96.6 AUC. Lastly, we extend the framework to learn and extract representations from patches to allow localizing defective areas without annotations during training.
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
在运行时检测新颖类的问题称为开放式检测,对于各种现实世界应用,例如医疗应用,自动驾驶等。在深度学习的背景下进行开放式检测涉及解决两个问题:(i):(i)必须将输入图像映射到潜在表示中,该图像包含足够的信息来检测异常值,并且(ii)必须学习一个可以从潜在表示中提取此信息以识别异常情况的异常评分函数。深度异常检测方法的研究缓慢进展。原因之一可能是大多数论文同时引入了新的表示学习技术和新的异常评分方法。这项工作的目的是通过提供分别衡量表示学习和异常评分的有效性的方法来改善这种方法。这项工作做出了两项方法论贡献。首先是引入甲骨文异常检测的概念,以量化学习潜在表示中可用的信息。第二个是引入Oracle表示学习,该学习产生的表示形式可以保证足以准确的异常检测。这两种技术可帮助研究人员将学习表示的质量与异常评分机制的性能分开,以便他们可以调试和改善系统。这些方法还为通过更好的异常评分机制改善了多少开放类别检测提供了上限。两个牙齿的组合给出了任何开放类别检测方法可以实现的性能的上限。这项工作介绍了这两种Oracle技术,并通过将它们应用于几种领先的开放类别检测方法来演示其实用性。
translated by 谷歌翻译
异常检测(AD),将异常与正常数据分开,从安全性到医疗保健都有许多范围内的应用程序。尽管大多数以前的作品都被证明对具有完全或部分标记数据的案例有效,但由于标记对此任务特别乏味,因此设置在实践中较不常见。在本文中,我们专注于完全无监督的AD,其中包含正常样本和异常样本的整个培训数据集未标记。为了有效地解决这个问题,我们建议通过使用数据改进过程来提高接受自我监督表示的一类分类的鲁棒性。我们提出的数据完善方法基于单级分类器(OCCS)的集合,每个分类器均经过培训的训练数据子集。随着数据改进的改进,通过自我监督学习学到的表示的表示。我们在具有图像和表格数据的各种无监督的AD任务上演示了我们的方法。 CIFAR-10图像数据的异常比率为10% /甲状腺表格数据的2.5%异常比率,该方法的表现优于最先进的单级分类器,高于6.3 AUC和12.5平均精度 / 22.9 F1评分。 。
translated by 谷歌翻译