In this paper, the Multi-Swarm Cooperative Information-driven search and Divide and Conquer mitigation control (MSCIDC) approach is proposed for faster detection and mitigation of forest fire by reducing the loss of biodiversity, nutrients, soil moisture, and other intangible benefits. A swarm is a cooperative group of Unmanned Aerial Vehicles (UAVs) that fly together to search and quench the fire effectively. The multi-swarm cooperative information-driven search uses a multi-level search comprising cooperative information-driven exploration and exploitation for quick/accurate detection of fire location. The search level is selected based on the thermal sensor information about the potential fire area. The dynamicity of swarms, aided by global regulative repulsion and merging between swarms, reduces the detection and mitigation time compared to the existing methods. The local attraction among the members of the swarm helps the non-detector members to reach the fire location faster, and divide-and-conquer mitigation control ensures a non-overlapping fire sector allocation for all members quenching the fire. The performance of MSCIDC has been compared with different multi-UAV methods using a simulated environment of pine forest. The performance clearly shows that MSCIDC mitigates fire much faster than the multi-UAV methods. The Monte-Carlo simulation results indicate that the proposed method reduces the average forest area burnt by $65\%$ and mission time by $60\%$ compared to the best result case of the multi-UAV approaches, guaranteeing a faster and successful mission.
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译
This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method designs a potential field to achieve the target density and generate trajectories using potential gradients to direct UAVs to regions of a higher potential. Collisions are prevented by implementing a distance field and correcting the agent's directional vector if the distance threshold is reached. The method is successfully tested for volume coverage and visual inspection of complex structures such as wind turbines and a bridge. For visual inspection, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure is designed and this field's gradient provides the camera orientation throughout the trajectory. The bridge inspection test case is compared with a state-of-the-art method where the HEDAC algorithm allowed more surface area to be inspected under the same conditions. The limitations of the HEDAC method are analyzed, focusing on computational efficiency and adequacy of spatial coverage to approximate the surface coverage. The proposed methodology offers flexibility in various setup parameters and is applicable to real-world inspection tasks.
translated by 谷歌翻译
近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些无人机团队对火的轨道(即位置和传播动态)进行推理的能力,以提供性能保证时间范围。在空中野火监测的问题上,我们提出了一个预测框架,该框架使多UAV团队的合作能够与概率性能保证一起进行协作现场覆盖和火灾跟踪。我们的方法使无人机能够推断出潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定于案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和救援,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明真实的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最新的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
本文介绍了设计,开发,并通过IISC-TCS团队为穆罕默德·本·扎耶德国际机器人挑战赛2020年挑战1的目标的挑战1硬件 - 软件系统的测试是抓住从移动和机动悬挂球UAV和POP气球锚定到地面,使用合适的操纵器。解决这一挑战的重要任务包括具有高效抓取和突破机制的硬件系统的设计和开发,考虑到体积和有效载荷的限制,使用适用于室外环境的可视信息的准确目标拦截算法和开发动态多功能机空中系统的软件架构,执行复杂的动态任务。在本文中,设计了具有末端执行器的单个自由度机械手设计用于抓取和突发,并且开发了鲁棒算法以拦截在不确定的环境中的目标。基于追求参与和人工潜在功能的概念提出了基于视觉的指导和跟踪法。本工作中提供的软件架构提出了一种操作管理系统(OMS)架构,其在多个无人机之间协同分配静态和动态任务,以执行任何给定的任务。这项工作的一个重要方面是所有开发的系统都设计用于完全自主模式。在这项工作中还包括对凉亭环境和现场实验结果中完全挑战的模拟的详细描述。所提出的硬件软件系统对反UAV系统特别有用,也可以修改以满足其他几种应用。
translated by 谷歌翻译
Utilizing autonomous drones or unmanned aerial vehicles (UAVs) has shown great advantages over preceding methods in support of urgent scenarios such as search and rescue (SAR) and wildfire detection. In these operations, search efficiency in terms of the amount of time spent to find the target is crucial since with the passing of time the survivability of the missing person decreases or wildfire management becomes more difficult with disastrous consequences. In this work, it is considered a scenario where a drone is intended to search and detect a missing person (e.g., a hiker or a mountaineer) or a potential fire spot in a given area. In order to obtain the shortest path to the target, a general framework is provided to model the problem of target detection when the target's location is probabilistically known. To this end, two algorithms are proposed: Path planning and target detection. The path planning algorithm is based on Bayesian inference and the target detection is accomplished by means of a residual neural network (ResNet) trained on the image dataset captured by the drone as well as existing pictures and datasets on the web. Through simulation and experiment, the proposed path planning algorithm is compared with two benchmark algorithms. It is shown that the proposed algorithm significantly decreases the average time of the mission.
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
工业事故和灾难中气体的不受控制的排放导致生命和财产损失巨大。这样的极端事件需要对现场进行快速可靠的调查,以进行有效的救援策略计划。为了实现这些目标,可以部署一个无人驾驶飞机网络,调查受影响地区并确定安全和危险区域。尽管在文献中对基于无人机的单一基于无人机的系统进行了充分研究,但是针对此类应用程序部署的研究(更强大且容忍度更高)仍处于起步阶段。该项目的目的是设计一个可以在紧急情况下部署的系统,以便在给定区域中快速调查和确定安全和危险的区域,该区域包含有毒羽流,而无需对羽状位置做出任何假设。我们专注于端到端的解决方案,并制定两相策略,该策略不仅可以保证羽流的检测/采集,而且可以通过高空间分辨率进行表征。为了确保通过一定的空间分辨率覆盖该地区,我们设置了车辆路由问题。为了克服有限的传感器和无人机资源范围施加的局限性,我们使用高斯核外推估计浓度图。最后,我们评估了模拟中建议的框架。我们的结果表明,这种两阶段策略不仅提供了更好的错误性能,而且在任务时间方面也更有效。此外,2阶段随机搜索与2相均匀覆盖范围之间的比较表明,后者对单个无人机系统更好,而对于多个无人机,前者以低计算成本提供了合理的性能。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
在科学和气象观点来看,具有潜在的健康和安全危害,如火山地区,难以访问或挑战区域的覆盖范围。该地区内容包含的地区通常提供不同重视的有价值信息。我们提出了一种算法,可以用无人驾驶飞行器(UAV)在Hawai`i中最佳地覆盖火山区域。目标区域被分配,具有不均匀的覆盖范围分配。对于UAV的指定电池容量,优化问题会寻求最大化总覆盖范围和累计重要评分的路径,同时惩罚同一区域的重新审视。基于可用的电源和覆盖信息图,轨迹是为无人机而离线生成的。最佳轨迹最小化未注册的电池电量,同时执行UAV返回其起始位置。通过使用顺序二次编程来解决这种多目标优化问题。讨论了竞争优化问题的细节以及分析和仿真结果,以证明所提出的算法的适用性。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
The preservation, monitoring, and control of water resources has been a major challenge in recent decades. Water resources must be constantly monitored to know the contamination levels of water. To meet this objective, this paper proposes a water monitoring system using autonomous surface vehicles, equipped with water quality sensors, based on a multimodal particle swarm optimization, and the federated learning technique, with Gaussian process as a surrogate model, the AquaFeL-PSO algorithm. The proposed monitoring system has two phases, the exploration phase and the exploitation phase. In the exploration phase, the vehicles examine the surface of the water resource, and with the data acquired by the water quality sensors, a first water quality model is estimated in the central server. In the exploitation phase, the area is divided into action zones using the model estimated in the exploration phase for a better exploitation of the contamination zones. To obtain the final water quality model of the water resource, the models obtained in both phases are combined. The results demonstrate the efficiency of the proposed path planner in obtaining water quality models of the pollution zones, with a 14$\%$ improvement over the other path planners compared, and the entire water resource, obtaining a 400$\%$ better model, as well as in detecting pollution peaks, the improvement in this case study is 4,000$\%$. It was also proven that the results obtained by applying the federated learning technique are very similar to the results of a centralized system.
translated by 谷歌翻译
尽管使用多个无人机(UAV)具有快速自主探索的巨大潜力,但它的关注程度很少。在本文中,我们提出了赛车手,这是一种使用分散无人机的舰队的快速协作探索方法。为了有效派遣无人机,使用了基于在线HGRID空间分解的成对交互。它可确保仅使用异步和有限的通信同时探索不同的区域。此外,我们优化了未知空间的覆盖路径,并通过电容的车辆路由问题(CVRP)配方平衡分区到每个UAV的工作负载。鉴于任务分配,每个无人机都会不断更新覆盖路径,并逐步提取关键信息以支持探索计划。分层规划师可以找到探索路径,完善本地观点并生成序列的最小时间轨迹,以敏捷,安全地探索未知空间。对所提出的方法进行了广泛的评估,显示出较高的勘探效率,可伸缩性和对有限交流的鲁棒性。此外,我们第一次与现实世界中的多个无人机进行了完全分散的协作探索。我们将作为开源软件包发布实施。
translated by 谷歌翻译
在这项工作中,我们优化了基于无人机(UAV)的便携式接入点(PAP)的3D轨迹,该轨迹为一组接地节点(GNS)提供无线服务。此外,根据Peukert效果,我们考虑无人机电池的实用非线性电池放电。因此,我们以一种新颖的方式提出问题,代表了基于公平的能源效率度量的最大化,并被称为公平能源效率(费用)。费用指标定义了一个系统,该系统对每用户服务的公平性和PAP的能源效率都非常重要。该法式问题采用非凸面问题的形式,并具有不可扣除的约束。为了获得解决方案,我们将问题表示为具有连续状态和动作空间的马尔可夫决策过程(MDP)。考虑到解决方案空间的复杂性,我们使用双胞胎延迟的深层确定性政策梯度(TD3)参与者 - 批判性深入强化学习(DRL)框架来学习最大化系统费用的政策。我们进行两种类型的RL培训来展示我们方法的有效性:第一种(离线)方法在整个训练阶段保持GN的位置相同;第二种方法将学习的政策概括为GN的任何安排,通过更改GN的位置,每次培训情节后。数值评估表明,忽视Peukert效应高估了PAP的播放时间,可以通过最佳选择PAP的飞行速度来解决。此外,用户公平,能源效率,因此可以通过有效地将PAP移动到GN上方,从而提高系统的费用价值。因此,我们注意到郊区,城市和茂密的城市环境的基线情景高达88.31%,272.34%和318.13%。
translated by 谷歌翻译
我们提出了一个新型混合动力系统(硬件和软件),该系统载有微型无人接地车辆(MiniUGV),以执行复杂的搜索和操纵任务。该系统利用异质机器人来完成使用单个机器人系统无法完成的任务。它使无人机能够探索一个隐藏的空间,并具有狭窄的开口,Miniugv可以轻松进入并逃脱。假定隐藏的空间可用于MiniUGV。 MiniUGV使用红外(IR)传感器和单眼相机在隐藏空间中搜索对象。所提出的系统利用摄像机的更广阔的视野(FOV)以及对象检测算法的随机性引导隐藏空间中的MiniUGV以找到对象。找到对象后,MiniUGV使用视觉伺服抓住它,然后返回其起点,从无人机将其缩回并将物体运送到安全的地方。如果在隐藏空间中没有发现对象,则无人机继续进行空中搜索。束缚的MiniUGV使无人机具有超出其影响力并执行搜索和操纵任务的能力,而该任务对于任何机器人都无法单独进行。该系统具有广泛的应用,我们通过重复实验证明了其可行性。
translated by 谷歌翻译
无人机(无人驾驶飞机)动态包围是一个具有巨大潜力的新兴领域。研究人员通常会从生物系统中获得灵感,要么是从宏观世界(如鱼类学校或鸟类羊群)或类似基因调节网络等微世界的灵感。但是,大多数群体控制算法都取决于集中控制,全球信息获取或相邻代理之间的通信。在这项工作中,我们提出了一种纯粹基于视觉的分布式群体控制方法,而没有任何直接通信,例如,群体的代理无人机可以生成一个陷入的模式,以完全基于其安装的全向视觉传感器包围无人机的逃脱目标。还设计了描述每种无人机行为模型的有限状态机器,以便一群无人机可以集体地搜索和捕获目标。我们在各种模拟和现实实验中验证了所提出方法的有效性和效率。
translated by 谷歌翻译
合作的任务执行是欧洲社会性的标志,通过代理与环境之间的本地交互通过动态发展的通信信号来实现。受社会昆虫的集体行为的启发,其动力学是由与环境相互作用的调节的,我们表明机器人集体可以通过捕获不稳定成功地对建筑工地进行成核,并合作地建立有组织的结构。相同的机器人集体还可以执行DE-构建,而行为参数的简单更改。这些行为属于沿一个轴的代理商相互作用(合作​​)定义的合作行为的二维相空间,而另一个轴则是代理 - 环境的相互作用(收集和沉积)。我们基于行为的机器人设计方法结合了本地规则的原则推导,使集体能够以鲁棒性解决动态变化的环境和丰富的复杂行为。
translated by 谷歌翻译
在各种任务和场景中使用多机器人系统的使用越来越兴趣。这种系统的主要吸引力是它们的灵活性,鲁棒性和可扩展性。系统模块化是一个经常被忽视但有希望的功能,它为利用代理专业化提供了可能性,同时还可以实现系统级别的升级。但是,改变代理的能力可以改变最大化系统性能所需的勘探探索示例平衡。在这里,我们研究了群异质性对其探索探索平衡的影响,同时跟踪在对多个移动目标框架的合作多机器人观察下跟踪多个快速移动的回避目标。为此,我们使用分散的搜索和跟踪策略,并具有可调节水平的探索和剥削水平。通过间接调整平衡,我们首先确认这两个关键的竞争动作之间存在最佳平衡。接下来,通过用更快的速度替换较慢的移动剂,我们表明该系统表现出了性能的改进,而无需对原始策略进行任何修改。此外,由于更快的代理商进行了额外的剥削量,我们证明,可以通过降低代理的连接水平来进一步改善异质系统的性能,从而有利于探索性动作的行为。此外,在研究蜂群剂的密度的影响时,我们表明,加快代理的添加可以抵消代理数量的减少,同时保持跟踪性能的水平。最后,我们探索使用差异化策略来利用群体的异质性质的挑战。
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译