在数据挖掘,神经科学和化学计量学在内的各个领域,分析各种数据集中的多路测量结果是一个挑战。例如,测量可能会随着时间的流逝而发展或具有不一致的时间曲线。 PARAFAC2模型已成功地用于分析此类数据,通过在一种模式(即演变模式)下允许基础因子矩阵跨切片进行更改。拟合PARAFAC2模型的传统方法是使用基于最小二乘的交替算法,该算法通过隐式估计不断发展的因子矩阵来处理Parafac2模型的恒定交叉产生约束。这种方法使对这些因素矩阵充满挑战。目前尚无算法可以灵活地将这种正规化施加,并具有一般的惩罚功能和硬性约束。为了应对这一挑战并避免隐性估计,在本文中,我们提出了一种算法,用于拟合PARAFAC2基于与乘数交替方向方法(AO-ADMM)的交替优化拟合parafac2。通过在模拟数据上进行数值实验,我们表明所提出的PARAFAC2 AO-ADMM方法允许灵活约束,准确地恢复了基础模式,并且与先进的ART相比,计算有效。我们还将模型应用于神经科学和化学计量学的两个现实世界数据集,并表明限制发展模式可改善提取模式的解释性。
translated by 谷歌翻译
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N -way array. Decompositions of higher-order tensors (i.e., N -way arrays with N ≥ 3) have applications in psychometrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.
translated by 谷歌翻译
约束的张量和矩阵分子化模型允许从多道数据中提取可解释模式。因此,对于受约束的低秩近似度的可识别性特性和有效算法是如此重要的研究主题。这项工作涉及低秩近似的因子矩阵的列,以众所周知的和可能的过度顺序稀疏,该模型包括基于字典的低秩近似(DLRA)。虽然早期的贡献集中在候选列字典内的发现因子列,即一稀疏的近似值,这项工作是第一个以大于1的稀疏性解决DLRA。我建议专注于稀疏编码的子问题,在解决DLRA时出现的混合稀疏编码(MSC)以交替的优化策略在解决DLRA时出现。提供了基于稀疏编码启发式的几种算法(贪婪方法,凸起放松)以解决MSC。在模拟数据上评估这些启发式的性能。然后,我展示了如何基于套索来调整一个有效的MSC求解器,以计算高光谱图像处理和化学测量学的背景下的基于词典的基于矩阵分解和规范的多adic分解。这些实验表明,DLRA扩展了低秩近似的建模能力,有助于降低估计方差并提高估计因子的可识别性和可解释性。
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
我们的目标是在沿着张量模式的协变量信息存在中可获得稀疏和高度缺失的张量。我们的动机来自在线广告,在各种设备上的广告上的用户点击率(CTR)形成了大约96%缺失条目的CTR张量,并且在非缺失条目上有许多零,这使得独立的张量完井方法不满意。除了CTR张量旁边,额外的广告功能或用户特性通常可用。在本文中,我们提出了协助协助的稀疏张力完成(Costco),以合并复苏恢复稀疏张量的协变量信息。关键思想是共同提取来自张量和协变矩阵的潜伏组分以学习合成表示。从理论上讲,我们导出了恢复的张量组件的错误绑定,并明确地量化了由于协变量引起的显露概率条件和张量恢复精度的改进。最后,我们将Costco应用于由CTR张量和广告协变矩阵组成的广告数据集,从而通过基线的23%的准确性改进。重要的副产品是来自Costco的广告潜在组件显示有趣的广告集群,这对于更好的广告目标是有用的。
translated by 谷歌翻译
我们使用张量奇异值分解(T-SVD)代数框架提出了一种新的快速流算法,用于抵抗缺失的低管级张量的缺失条目。我们展示T-SVD是三阶张量的研究型块术语分解的专业化,我们在该模型下呈现了一种算法,可以跟踪从不完全流2-D数据的可自由子模块。所提出的算法使用来自子空间的基层歧管的增量梯度下降的原理,以解决线性复杂度和时间样本的恒定存储器的张量完成问题。我们为我们的算法提供了局部预期的线性收敛结果。我们的经验结果在精确态度上具有竞争力,但在计算时间内比实际应用上的最先进的张量完成算法更快,以在有限的采样下恢复时间化疗和MRI数据。
translated by 谷歌翻译
网络数据通常在各种应用程序中收集,代表感兴趣的功能之间直接测量或统计上推断的连接。在越来越多的域中,这些网络会随着时间的流逝而收集,例如不同日子或多个主题之间的社交媒体平台用户之间的交互,例如在大脑连接性的多主体研究中。在分析多个大型网络时,降低降低技术通常用于将网络嵌入更易于处理的低维空间中。为此,我们通过专门的张量分解来开发用于网络集合的主组件分析(PCA)的框架,我们将半对称性张量PCA或SS-TPCA术语。我们得出计算有效的算法来计算我们提出的SS-TPCA分解,并在标准的低级别信号加噪声模型下建立方法的统计效率。值得注意的是,我们表明SS-TPCA具有与经典矩阵PCA相同的估计精度,并且与网络中顶点数的平方根成正比,而不是预期的边缘数。我们的框架继承了古典PCA的许多优势,适用于广泛的无监督学习任务,包括识别主要网络,隔离有意义的更改点或外出观察,以及表征最不同边缘的“可变性网络”。最后,我们证明了我们的提案对模拟数据的有效性以及经验法律研究的示例。用于建立我们主要一致性结果的技术令人惊讶地简单明了,可能会在其他各种网络分析问题中找到使用。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
我们提出了一种监督学习稀疏促进正规化器的方法,以降低信号和图像。促进稀疏性正则化是解决现代信号重建问题的关键要素。但是,这些正规化器的基础操作员通常是通过手动设计的,要么以无监督的方式从数据中学到。监督学习(主要是卷积神经网络)在解决图像重建问题方面的最新成功表明,这可能是设计正规化器的富有成果的方法。为此,我们建议使用带有参数,稀疏的正规器的变异公式来贬低信号,其中学会了正常器的参数,以最大程度地减少在地面真实图像和测量对的训练集中重建的平均平方误差。培训涉及解决一个具有挑战性的双层优化问题;我们使用denoising问题的封闭形式解决方案得出了训练损失梯度的表达,并提供了随附的梯度下降算法以最大程度地减少其。我们使用结构化1D信号和自然图像的实验表明,所提出的方法可以学习一个超过众所周知的正规化器(总变化,DCT-SPARSITY和无监督的字典学习)的操作员和用于DeNoisis的协作过滤。尽管我们提出的方法是特定于denoising的,但我们认为它可以适应线性测量模型的较大类反问题,使其在广泛的信号重建设置中适用。
translated by 谷歌翻译
我们考虑将矢量时间序列信号分解为具有不同特征(例如平滑,周期性,非负或稀疏)的组件的充分研究的问题。我们描述了一个简单而通用的框架,其中组件由损耗函数(包括约束)定义,并通过最大程度地减少组件损耗之和(受约束)来执行信号分解。当每个损耗函数是信号分量密度的负模样时,该框架与最大后验概率(MAP)估计相吻合;但这也包括许多其他有趣的案例。总结和澄清先前的结果,我们提供了两种分布式优化方法来计算分解,当组件类损失函数是凸的时,它们找到了最佳分解,并且在没有时是良好的启发式方法。两种方法都仅需要每个组件损耗函数的掩盖近端操作员,这是对其参数中缺少条目的众所周知近端操作员的概括。两种方法均分布,即分别处理每个组件。我们得出可拖动的方法来评估某些损失函数的掩盖近端操作员,据我们所知,这些损失函数尚未出现在文献中。
translated by 谷歌翻译
目前的论文研究了最小化损失$ f(\ boldsymbol {x})$的问题,而在s $ \ boldsymbol {d} \ boldsymbol {x} \的约束,其中$ s $是一个关闭的集合,凸面或非,$ \ boldsymbol {d} $是熔化参数的矩阵。融合约束可以捕获平滑度,稀疏或更一般的约束模式。为了解决这个通用的问题,我们将Beltrami-Courant罚球方法与近距离原则相结合。后者是通过最小化惩罚目标的推动$ f(\ boldsymbol {x})+ \ frac {\ rho} {2} \ text {dist}(\ boldsymbol {d} \ boldsymbol {x},s)^ 2 $涉及大型调整常量$ \ rho $和$ \ boldsymbol {d} \ boldsymbol {x} $的平方欧几里德距离$ s $。通过最小化大多数代理函数$ f(\ boldsymbol {x},从当前迭代$ \ boldsymbol {x} _n $构建相应的近距离算法的下一个迭代$ \ boldsymbol {x} _ {n + 1} $。 )+ \ frac {\ rho} {2} \ | \ boldsymbol {d} \ boldsymbol {x} - \ mathcal {p} _ {s}(\ boldsymbol {d} \ boldsymbol {x} _n)\ | ^ 2 $。对于固定$ \ rho $和subanalytic损失$ f(\ boldsymbol {x})$和子质约束设置$ s $,我们证明了汇聚点。在更强大的假设下,我们提供了收敛速率并展示线性本地收敛性。我们还构造了一个最陡的下降(SD)变型,以避免昂贵的线性系统解决。为了基准我们的算法,我们比较乘法器(ADMM)的交替方向方法。我们广泛的数值测试包括在度量投影,凸回归,凸聚类,总变化图像去噪和矩阵的投影到良好状态数的问题。这些实验表明了我们在高维问题上最陡的速度和可接受的准确性。
translated by 谷歌翻译
在线张量分解(OTF)是一种从流媒体多模态数据学习低维解释特征的基本工具。虽然最近已经调查了OTF的各种算法和理论方面,但仍然甚至缺乏任何不连贯或稀疏假设的客观函数的静止点的一般会聚保证仍然缺乏仍然缺乏缺乏。案件。在这项工作中,我们介绍了一种新颖的算法,该算法从一般约束下的给定的张力值数据流中学习了CANDECOMP / PARAFAC(CP),包括诱导学习CP的解释性的非承诺约束。我们证明我们的算法几乎肯定会收敛到目标函数的一组静止点,在该假设下,数据张集的序列由底层马尔可夫链产生。我们的环境涵盖了古典的i.i.d.案例以及广泛的应用程序上下文,包括由独立或MCMC采样生成的数据流。我们的结果缩小了OTF和在线矩阵分解在全局融合分析中的OTF和在线矩阵分解之间的差距\ Commhl {对于CP - 分解}。实验,我们表明我们的算法比合成和实际数据的非负张量分解任务的标准算法更快地收敛得多。此外,我们通过图像,视频和时间序列数据展示了我们算法对来自图像,视频和时间序列数据的多样化示例的实用性,示出了通过以多种方式利用张量结构来利用张量结构,如何从相同的张量数据中学习定性不同的CP字典。 。
translated by 谷歌翻译
最近的论文开发了CP和张量环分解的交替正方形(ALS)方法,其均值成本是sublinear,在低级别分解的输入张量输入量中是sublinear。在本文中,我们提出了基于抽样的ALS方法,用于CP和张量环分解,其成本没有指数级的依赖性,从而显着改善了先前的最先前。我们提供详细的理论分析,并在特征提取实验中应用这些方法。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
Tensor完成是矩阵完成的自然高阶泛化,其中目标是从其条目的稀疏观察中恢复低级张量。现有算法在没有可证明的担保的情况下是启发式,基于解决运行不切实际的大型半纤维程序,或者需要强大的假设,例如需要因素几乎正交。在本文中,我们介绍了交替最小化的新变型,其又通过了解如何对矩阵设置中的交替最小化的收敛性的进展措施来调整到张量设置的启发。我们展示了强大的可证明的保证,包括表明我们的算法即使当因素高度相关时,我们的算法也会在真正的张量线上会聚,并且可以在几乎线性的时间内实现。此外,我们的算法也非常实用,我们表明我们可以完成具有千维尺寸的三阶张量,从观察其条目的微小一部分。相比之下,有些令人惊讶的是,我们表明,如果没有我们的新扭曲,则表明交替最小化的标准版本可以在实践中以急剧速度收敛。
translated by 谷歌翻译
我们开发了快速算法和可靠软件,以凸出具有Relu激活功能的两层神经网络的凸优化。我们的工作利用了标准的重量罚款训练问题作为一组组-YELL_1 $调查的数据本地模型的凸重新印度,其中局部由多面体锥体约束强制执行。在零规范化的特殊情况下,我们表明此问题完全等同于凸“ Gated Relu”网络的不受约束的优化。对于非零正则化的问题,我们表明凸面式relu模型获得了RELU训练问题的数据依赖性近似范围。为了优化凸的重新制定,我们开发了一种加速的近端梯度方法和实用的增强拉格朗日求解器。我们表明,这些方法比针对非凸问题(例如SGD)和超越商业内部点求解器的标准训练启发式方法要快。在实验上,我们验证了我们的理论结果,探索组-ELL_1 $正则化路径,并对神经网络进行比例凸的优化,以在MNIST和CIFAR-10上进行图像分类。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
多光谱探测器的进步导致X射线计算机断层扫描(CT)的范式偏移。从这些检测器获取的光谱信息可用于提取感兴趣对象的体积材料成分图。如果已知材料及其光谱响应是先验的,则图像重建步骤相当简单。但是,如果他们不知道,则需要共同估计地图以及响应。频谱CT中的传统工作流程涉及执行卷重建,然后进行材料分解,反之亦然。然而,这些方法本身遭受了联合重建问题的缺陷。为了解决这个问题,我们提出了一种基于词典的联合重建和解密方法的光谱断层扫描(调整)。我们的配方依赖于形成CT中常见的材料的光谱签名词典以及对象中存在的材料数的先验知识。特别地,我们在空间材料映射,光谱词典和字典元素的材料的指示符方面对光谱体积线性分解。我们提出了一种记忆有效的加速交替的近端梯度方法,以找到所得到的Bi-convex问题的近似解。根据几种合成幻影的数值示范,我们观察到与其他最先进的方法相比,调整非常好。此外,我们解决了针对有限测量模式调整的鲁棒性。
translated by 谷歌翻译
计算表型可以无监督发现患者的亚组以及电子健康记录(EHR)的相应同时发生的医疗状况。通常,EHR数据包含人口统计信息,诊断和实验室结果。发现(新颖的)表型具有预后和治疗价值的潜力。为医生提供透明且可解释的结果是一项重要要求,也是推进精确医学的重要组成部分。低级别数据近似方法,例如矩阵(例如,非负矩阵分解)和张量分解(例如,candecomp/parafac),已经证明它们可以提供这种透明且可解释的见解。最近的发展通过合并不同的限制和正规化来促进可解释性,从而适应了低级数据近似方法。此外,它们还为EHR数据中的共同挑战提供解决方案,例如高维度,数据稀疏性和不完整性。尤其是从纵向EHR中提取时间表型,近年来引起了很多关注。在本文中,我们对计算表型的低级别近似方法进行了全面的综述。现有文献根据矩阵与张量分解归类为时间与静态表型方法。此外,我们概述了验证表型的不同方法,即评估临床意义。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译