在本文中,我们呈现AIDA,它是一种积极推断的代理,可以通过与人类客户端的互动来迭代地设计个性化音频处理算法。 AIDA的目标应用是在助听器(HA)算法的调整参数的情况下,每当HA客户端对其HA性能不满意时,提出了最有趣的替代值。 AIDA解释搜索“最有趣的替代品”作为最佳(声学)背景感知贝叶斯试验设计的问题。在计算术语中,AIDA被实现为基于有源推断的药剂,具有预期的试验设计的自由能标准。这种类型的建筑受到高效(贝叶斯)试验设计的神经经济模型的启发,并意味着AIDA包括用于声学信号和用户响应的生成概率模型。我们提出了一种用于声学信号的新型生成模型作为基于高斯过程分类器的时变自自回归滤波器和用户响应模型的总和。已经在生成模型的因子图中实施了完整的AIDA代理,并且通过对因子图的变分消息来实现所有任务(参数学习,声学上下文分类,试验设计等)。所有验证和验证实验和演示都可以在我们的GitHub存储库中自由访问。
translated by 谷歌翻译
我们将反应性消息传递(RMP)作为框架,用于在概率模型的因子图表示中执行基于时间表,鲁棒和可扩展的消息通过的基于消息传递的推断。 RMP基于反应性编程风格,该样式仅描述因子图中的节点如何对连接节点中的更改作出反应。没有固定消息传递计划提高推理过程的稳健性,可伸缩性和执行时间。我们还存在ReactiveMp.jl,这是一个Julia包,用于通过最小化约束的自由能实现RMP。通过用户定义的本地表单和分解约束对变分后部分布的结构,ReastiveMp.jl执行混合消息传递算法,包括信仰传播,变分消息通过,期望传播和期望最大化更新规则。实验结果表明,与其他概率模型的贝叶斯推断的其他朱莉娅封装相比,基于Reactivemp的RMP的性能提高。特别是,我们表明RMP框架能够为大型概率状态空间模型运行贝叶斯人推断,并在标准膝上型计算机上具有数十万个随机变量。
translated by 谷歌翻译
积极推断是复杂系统中的认知和行为的叙述,它在贝叶斯推论的理论地幔下举起动作,感知和学习。积极的推论已经看到学术研究中的应用越来越多,特别是在寻求模拟人类或动物行为的领域。虽然近年来,来自有效推理文献产生的一些代码已经用Python和Julia这样的开源语言编写,迄今为止,用于模拟活动推理代理的最流行的软件是SPM,Matlab库的DEM工具箱最初开发用于神经影像数据的统计分析和建模。因此,在纯粹的数字和科学学科的应用程序方面,表现出对积极推断的兴趣,因此为在开源科学计算语言中模拟了激活推论的通用,广泛可用的和用户友好的代码,这一切都表现为纯粹的数字以及跨科学学科的应用程序。像python。我们在这里呈现的Python包,Pymdp(参见https://github.com/fifer-active/pymdp)表示朝这个方向的重要一步:即,我们提供了用于模拟有源推断的第一个开源包,部分 - 可观察的马尔可夫决策过程或POMDPS。我们查看包的结构,并解释了模块化设计和定制等优点,同时提供沿着文本代码块,以便演示如何使用它以轻松地构建和运行主动推断过程。我们开发了PyMDP,以增加有效推理框架的可访问性和暴露于有多种纪律背景的研究人员,工程师和开发人员。本着开源软件的精神,我们也希望它在不断增长的积极推理界中产生新的创新,发展和合作。
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译
自由能原理及其必然的积极推论构成了一种生物启发的理论,该理论假设生物学作用保留在一个受限制的世界首选状态中,即它们最小化自由能。根据这一原则,生物学家学习了世界的生成模型和未来的计划行动,该模型将使代理保持稳态状态,以满足其偏好。该框架使自己在计算机中实现,因为它理解了使其计算负担得起的重要方面,例如变异推断和摊销计划。在这项工作中,我们研究了深度学习的工具,以设计和实现基于主动推断的人造代理,对自由能原理进行深入学习的呈现,调查工作与机器学习和主动推理领域相关,以及讨论实施过程中涉及的设计选择。该手稿探究了积极推理框架的新观点,将其理论方面扎根于更务实的事务中,为活跃推理的新手提供了实用指南,并为深度学习从业人员的起点提供了研究,以调查自由能源原则的实施。
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
学习涉及时变和不断发展的系统动态的控制政策通常对主流强化学习算法构成了巨大的挑战。在大多数标准方法中,通常认为动作是一组刚性的,固定的选择,这些选择以预定义的方式顺序应用于状态空间。因此,在不诉诸于重大学习过程的情况下,学识渊博的政策缺乏适应动作集和动作的“行为”结果的能力。此外,标准行动表示和动作引起的状态过渡机制固有地限制了如何将强化学习应用于复杂的现实世界应用中,这主要是由于所得大的状态空间的棘手性以及缺乏概括的学术知识对国家空间未知部分的政策。本文提出了一个贝叶斯味的广义增强学习框架,首先建立参数动作模型的概念,以更好地应对不确定性和流体动作行为,然后将增强领域的概念作为物理启发的结构引入通过“极化体验颗粒颗粒建立) “维持在学习代理的工作记忆中。这些粒子有效地编码了以自组织方式随时间演变的动态学习体验。在强化领域之上,我们将进一步概括策略学习过程,以通过将过去的记忆视为具有隐式图结构来结合高级决策概念,在该结构中,过去的内存实例(或粒子)与决策之间的相似性相互联系。定义,因此,可以应用“关联记忆”原则来增强学习代理的世界模型。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
在人类中,感知意识促进了来自感官输入的快速识别和提取信息。这种意识在很大程度上取决于人类代理人如何与环境相互作用。在这项工作中,我们提出了主动神经生成编码,用于学习动作驱动的生成模型的计算框架,而不会在动态环境中反正出错误(Backprop)。具体而言,我们开发了一种智能代理,即使具有稀疏奖励,也可以从规划的认知理论中汲取灵感。我们展示了我们框架与深度Q学习竞争力的几个简单的控制问题。我们的代理的强劲表现提供了有希望的证据,即神经推断和学习的无背方法可以推动目标定向行为。
translated by 谷歌翻译
有效计划的能力对于生物体和人造系统都是至关重要的。在认知神经科学和人工智能(AI)中广泛研究了基于模型的计划和假期,但是从不同的角度来看,以及难以调和的考虑(生物现实主义与可伸缩性)的不同意见(生物现实主义与可伸缩性)。在这里,我们介绍了一种新颖的方法来计划大型POMDP(Active Tree search(ACT)),该方法结合了神经科学中领先的计划理论的规范性特征和生物学现实主义(主动推论)和树木搜索方法的可扩展性AI。这种统一对两种方法都是有益的。一方面,使用树搜索可以使生物学接地的第一原理,主动推断的方法可应用于大规模问题。另一方面,主动推理为探索 - 开发困境提供了一种原则性的解决方案,该解决方案通常在树搜索方法中以启发性解决。我们的模拟表明,ACT成功地浏览了对基于抽样的方法,需要自适应探索的问题以及大型POMDP问题“ RockSample”的二进制树,其中ACT近似于最新的POMDP解决方案。此外,我们说明了如何使用ACT来模拟人类和其他解决大型计划问题的人类和其他动物的神经生理反应(例如,在海马和前额叶皮层)。这些数值分析表明,主动树搜索是神经科学和AI计划理论的原则性实现,既具有生物现实主义和可扩展性。
translated by 谷歌翻译
在过去的10到15年中,积极的推论有助于解释从习惯形成到多巴胺能放电甚至建模好奇心的各种脑机制。然而,当在将所有可能的策略上计算到时间范围内的所有可能的策略时,当前实现遭受指数(空间和时间)复杂性等级。 Fountas等人(2020)使用Monte Carlo树搜索解决这个问题,导致两个不同的任务中的令人印象深刻的结果。在本文中,我们提出了一种替代框架,其旨在通过铸造规划作为结构学习问题来统一树搜索和有效推论。然后呈现两个树搜索算法。首先将预期的自由能量及时向前传播(即,朝向叶子),而第二次向后传播(即,朝向根)。然后,我们证明前向和后向传播分别与主动推断和复杂的推断相关,从而阐明了这两个规划策略之间的差异。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
神经生成模型可用于学习从数据的复杂概率分布,从它们中进行采样,并产生概率密度估计。我们提出了一种用于开发由大脑预测处理理论启发的神经生成模型的计算框架。根据预测加工理论,大脑中的神经元形成一个层次结构,其中一个级别的神经元形成关于来自另一个层次的感觉输入的期望。这些神经元根据其期望与观察到的信号之间的差异更新其本地模型。以类似的方式,我们的生成模型中的人造神经元预测了邻近的神经元的作用,并根据预测匹配现实的程度来调整它们的参数。在这项工作中,我们表明,在我们的框架内学到的神经生成模型在练习中跨越多个基准数据集和度量来表现良好,并且保持竞争或显着优于具有类似功能的其他生成模型(例如变形自动编码器)。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
Despite the wealth of empirical data in neuroscience, there are relatively few global theories about how the brain works. A recently proposed free-energy principle for adaptive systems tries to provide a unified account of action, perception and learning. Although this principle has been portrayed as a unified brain theory 1 , its capacity to unify different perspectives on brain function has yet to be established. This Review attempts to place some key theories within the free-energy framework, in the hope of identifying common themes. I first review the free-energy principle and then deconstruct several global brain theories to show how they all speak to the same underlying idea. The free-energy principleThe free-energy principle (BOX 1) says that any selforganizing system that is at equilibrium with its environment must minimize its free energy 2 . The principle is essentially a mathematical formulation of how adaptive systems (that is, biological agents, like animals or brains) resist a natural tendency to disorder [3][4][5][6] . What follows is a non-mathematical treatment of the motivation and implications of the principle. We will see that although the motivation is quite straightforward, the implications are complicated and diverse. This diversity allows the principle to account for many aspects of brain structure and function and lends it the potential to unify different perspectives on how the brain works. In subsequent sections, I discuss how the principle can be applied to neuronal systems as viewed from these perspectives. This Review starts in a rather abstract and technical way but then tries to unpack the basic idea in more familiar terms.Motivation: resisting a tendency to disorder. The defining characteristic of biological systems is that they maintain their states and form in the face of a constantly changing environment [3][4][5][6] . From the point of view of the brain, the environment includes both the external and the internal milieu. This maintenance of order is seen at many levels and distinguishes biological from other self-organizing systems; indeed, the physiology of biological systems can be reduced almost entirely to their homeostasis 7 . More precisely, the repertoire of physiological and sensory states in which an organism can be is limited, and these states define the organism's phenotype. Mathematically, this means that the probability of these (interoceptive and exteroceptive) sensory states must have low entropy; in other words, there is a high probability that a system will be in any of a small number of states, and a low probability that it will be in the remaining states. Entropy is also the average self information or 'surprise' 8 (more formally, it is the negative log-probability of an outcome). Here, 'a fish out of water' would be in a surprising state (both emotionally and mathematically). A fish that frequently forsook water would have high entropy. Note that both surprise and entropy depend on the agen
translated by 谷歌翻译
建立一种人类综合人工认知系统,即人工综合情报(AGI),是人工智能(AI)领域的圣杯。此外,实现人工系统实现认知发展的计算模型将是脑和认知科学的优秀参考。本文介绍了一种通过集成元素认知模块来开发认知架构的方法,以实现整个模块的训练。这种方法是基于两个想法:(1)脑激发AI,学习人类脑建筑以构建人类级智能,(2)概率的生成模型(PGM)基础的认知系统,为发展机器人开发认知系统通过整合PGM。发展框架称为全大脑PGM(WB-PGM),其根本地不同于现有的认知架构,因为它可以通过基于感官电机信息的系统不断学习。在这项研究中,我们描述了WB-PGM的基本原理,基于PGM的元素认知模块的当前状态,与人类大脑的关系,对认知模块的整合的方法,以及未来的挑战。我们的研究结果可以作为大脑研究的参考。随着PGMS描述变量之间的明确信息关系,本说明书提供了从计算科学到脑科学的可解释指导。通过提供此类信息,神经科学的研究人员可以向AI和机器人提供的研究人员提供反馈,以及目前模型缺乏对大脑的影响。此外,它可以促进神经认知科学的研究人员以及AI和机器人的合作。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译