我们使用人工智能(AI)来学习和推断出准圆形,旋转的高阶重力波模式的物理学,旋转,非精确的二进制黑洞合并。我们培训了使用1400万波形的AI模型,并使用代理模型NRHYBSUR3DQ8生产,包括最多$ \ ell \ Leq 4 $和$(5,5)$的模式,除了$(4,0)$和$(4 1)$,描述具有大规模比率$ Q \ LEQ8 $和个人SPINS $ S ^ z _ {\ {1,2 \}} \中的二进制文件。我们使用我们的AI模型来获得质量比,单独的旋转,有效旋转和描述这种信号歧管的数值相对性波形的倾斜角度的确定性和概率估计。我们的研究表明,AI为这些物理参数提供了信息估计。该工作标记第一次AI能够表征该高维信号歧管。我们的AI型号在3.4小时内培训,在峰会超级计算机上的256个节点(1,536个NVIDIA V100 GPU)上的分布式培训培训。
translated by 谷歌翻译
我们介绍了深度学习模型,以估计黑洞兼并的二元组件的群众,$(m_1,m_2)$,以及合并后巧妙剩余滞留的三个天体性质,即最终旋转,$ a_f $,以及ringdown振荡的频率和阻尼时间为基础$ \ ell = m = 2 $酒吧模式,$(\ OMEGA_R,\ OMEGA_I)$。我们的神经网络将修改的$ \ texttt {wavenet} $架构与对比学习和标准化流相结合。我们将这些模型验证在先前分布通过闭合的分析表达描述后的高斯缀合物的先前家庭。确认我们的模型产生统计上一致的结果,我们使用它们来估计五个二进制黑洞的天体物理参数$(m_1,m_2,a_f,\ oomega_r,\ omega_i):$ \ texttt {gw150914},\ texttt {gw170104 },\ texttt {gw170814},\ texttt {gw190521} $和$ \ texttt {gw190630} $。我们使用$ \ texttt {pycbc推理} $直接比较传统的贝叶斯方法进行参数估计与我们的深度学习的后部分布。我们的研究结果表明,我们的神经网络模型预测编码物理相关性的后分布,以及我们的数据驱动的中值结果和90美元\%$置信区间与引力波贝叶斯分析产生的数据相似。此方法需要单个V100 $ \ TextTT {NVIDIA} $ GPU,以在每次事件中生成2毫秒内的中位值和后部分布。这个神经网络和使用的教程,可在$ \ texttt {scounty} $ \ texttt {scounty hub} $。
translated by 谷歌翻译
我们介绍了第一个机器学习引力波搜索模拟数据挑战(MLGWSC-1)的结果。在这一挑战中,参与的小组必须从二进制黑洞合并中识别出复杂性和持续时间逐渐嵌入在逐渐更现实的噪声中的引力波信号。 4个提供的数据集中的决赛包含O3A观察的真实噪声,并发出了20秒的持续时间,其中包含进动效应和高阶模式。我们介绍了在提交前从参与者未知的1个月的测试数据中得出的6个输入算法的平均灵敏度距离和运行时。其中4个是机器学习算法。我们发现,最好的基于机器学习的算法能够以每月1个的错误警报率(FAR)的速度(FAR)实现基于匹配过滤的生产分析的敏感距离的95%。相反,对于真实的噪音,领先的机器学习搜索获得了70%。为了更高的范围,敏感距离缩小的差异缩小到某些数据集上选择机器学习提交的范围$ \ geq 200 $以优于传统搜索算法的程度。我们的结果表明,当前的机器学习搜索算法可能已经在有限的参数区域中对某些生产设置有用。为了改善最新的技术,机器学习算法需要降低他们能够检测信号并将其有效性扩展到参数空间区域的虚假警报率,在这些区域中,建模的搜索在计算上很昂贵。根据我们的发现,我们汇编了我们认为,将机器学习搜索提升到重力波信号检测中的宝贵工具,我们认为这是最重要的研究领域。
translated by 谷歌翻译
快速,高度准确,可靠的引力波浪的推动,可以实现实时多信使天文学。目前贝叶斯推理方法虽然高度准确可靠,但很慢。深度学习模型已经表明了引力波的推理任务非常快速,但由于神经网络的黑箱性质,它们的产出本质上是可疑的。在这项工作中,我们通过应用了多头卷积神经网络产生的近似后验的重要性抽样加入贝叶斯推论和深度学习。神经网络参数化Von Mises-Fisher和天空坐标和高斯分布的天空坐标和两个群众,用于给定Ligo和Virgo探测器的模拟重力波注射。我们为看不见的引力波事件产生跨ysmaps,这是几分钟内使用贝叶斯推理产生的高等类似的预测。此外,我们可以检测神经网络的差,并迅速向它们标记。
translated by 谷歌翻译
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
引力波(GW)检测现在是普遍的,并且随着GW探测器的全球网络的灵敏度,我们将观察每年瞬态GW事件的$ \ MATHCAL {O}(100)美元。用于估计其源参数的目前的方法采用最佳敏感但是计算昂贵的贝叶斯推理方法,其中典型的分析在6小时和5天之间取。对于二元中子星和中子星黑洞系统提示,预计在1秒 - 1分钟的时间尺度和用于提醒EM随访观察员的最快方法,可以提供估计在$ \ mathcal {o }(1)$分钟,在有限的关键源参数范围内。在这里,我们表明,在二进制黑洞信号上预先培训的条件变形Autiachoder可以返回贝叶斯后概率估计。仅针对给定的先前参数空间执行一次训练程序,然后可以将所得培训的机器能够生成描述后部分配$ \ SIM 6 $幅度的样本比现有技术更快。
translated by 谷歌翻译
有条件神经密度估计器的仿真推断是解决科学逆问题的强大方法。然而,这些方法通常将底层向前模型视为一个黑匣子,没有办法利用等物学,例如协调。协调在科学模型中是常见的,然而将它们直接集成到表达推导网络中(例如标准化流动)并不简单。我们在这里描述了在参数和数据的联合转换下掺入协调的替代方法。我们的方法 - 称为组等级神经后后估计(GNPE) - 基于自始终标准化数据的“姿势”,同时估计在参数上后部。它是独立的架构,并适用于精确和近似的协调。作为现实世界的应用,我们使用GNPE从引力波观测到Astrophysical Block Block Systems的摊销推理。我们表明GNPE实现了最先进的准确性,同时减少了三个数量级的推理时间。
translated by 谷歌翻译
我们介绍了一种引力波形反演策略,用于发现二元黑洞(BBH)系统的机械模型。我们表明,只需要单一的时间序列(可能嘈杂)波形数据来构造BBH系统的运动方程。从前馈神经网络参数化的一类通用微分方程开始,我们的策略涉及构建合理的机械模型的空间和该空间内的物理信息的受限优化,以最小化波形误差。我们将我们的方法应用于各种BBH系统,包括偏心和非偏心轨道的极端和可比的质量比系统。我们展示所得到的微分方程适用于时间持续时间长于训练间隔的时间,并且相对论效应,例如临床预防,辐射反应和轨道插入,被自动占。这里概述的方法提供了研究二元黑洞系统动态的新的数据驱动方法。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
We propose parameterizing the population distribution of the gravitational wave population modeling framework (Hierarchical Bayesian Analysis) with a normalizing flow. We first demonstrate the merit of this method on illustrative experiments and then analyze four parameters of the latest LIGO/Virgo data release: primary mass, secondary mass, redshift, and effective spin. Our results show that despite the small and notoriously noisy dataset, the posterior predictive distributions (assuming a prior over the parameters of the flow) of the observed gravitational wave population recover structure that agrees with robust previous phenomenological modeling results while being less susceptible to biases introduced by less-flexible distribution models. Therefore, the method forms a promising flexible, reliable replacement for population inference distributions, even when data is highly noisy.
translated by 谷歌翻译
推断基于实验观察的随机模型的参数是科学方法的核心。特别具有挑战性的设置是当模型强烈不确定时,即当不同的参数集产生相同的观察时。这在许多实际情况下出现,例如在推断无线电源的距离和功率时(是源关闭和弱或远远强,且强大且强大?)或估计电生理实验的放大器增益和底层脑活动。在这项工作中,我们通过利用由辅助观察集共享全局参数传达的附加信息来阐明这种不确定性的新方法。我们的方法基于对贝叶斯分层模型的标准化流程扩展了基于仿真的推断(SBI)的最新进展。我们通过模拟和实际EEG数据将其应用于可用于分析解决方案的激励示例,以便将其验证我们的提案,然后将其从计算神经科学逆变众所周知的非线性模型。
translated by 谷歌翻译
基于空间的重力波(GW)检测器将能够观察到来自当前基于地面检测的来源几乎不可能的信号。因此,建立的信号检测方法(匹配的过滤)将需要一个复杂的模板库,从而导致计算成本在实践中过于昂贵。在这里,我们为所有空间GW来源开发了高准确的GW信号检测和提取方法。作为概念的证明,我们表明,科学驱动和统一的多阶段深神经网络可以识别出浸入高斯噪声中的合成信号。与目标信号相比,我们的方法具有超过99%的信号检测准确性,同时获得至少95%的相似性。我们进一步证明了几种扩展场景的解释性和强烈的概括行为。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
这项研究的目的是评估历史匹配的潜力(HM),以调整具有多尺度动力学的气候系统。通过考虑玩具气候模型,即两尺度的Lorenz96模型并在完美模型设置中生产实验,我们详细探讨了如何需要仔细测试几种内置选择。我们还展示了在参数范围内引入物理专业知识的重要性,这是运行HM的先验性。最后,我们重新审视气候模型调整中的经典过程,该程序包括分别调整慢速和快速组件。通过在Lorenz96模型中这样做,我们说明了合理参数的非唯一性,并突出了从耦合中出现的指标的特异性。本文也有助于弥合不确定性量化,机器学习和气候建模的社区,这是通过在每个社区使用的术语之间建立相同概念的术语并提出有希望的合作途径,从而使气候建模研究受益。
translated by 谷歌翻译
由于耗时的光曲线计算和高维参数空间中的病理可能性景观,通过基于标准的采样方法对二进制微透镜曲线进行建模可能具有挑战性。在这项工作中,我们提出了魔术,这是一个机器学习框架,可有效,准确地推断出具有现实数据质量的二进制事件的微透镜参数。在魔术中,将二进制微透镜参数分为两组,并通过不同的神经网络分别推断。魔术的关键特征是引入神经控制的微分方程,该方程提供了通过不规则采样和较大数据差距处理光曲线的能力。基于模拟的光曲线,我们表明魔术可以在二进制质量比和分离上达到几%的分数不确定性。我们还在真实的微透镜事件中测试魔术。即使引入了较大的数据差距,魔术也能够找到退化的解决方案。由于不规则的采样在天文学调查中很常见,因此我们的方法还对涉及时间序列的其他研究具有影响。
translated by 谷歌翻译