本文考虑了多智能经纪人强化学习(MARL)任务,代理商在集会结束时获得共享全球奖励。这种奖励的延迟性质影响了代理商在中间时间步骤中评估其行动质量的能力。本文侧重于开发学习焦点奖励的时间重新分布的方法,以获得密集奖励信号。解决这些MARL问题需要解决两个挑战:识别(1)沿着集发作(沿时间)的长度相对重要性,以及(2)在任何单一时间步骤(代理商中)的相对重要性。在本文中,我们介绍了奖励中的奖励再分配,在整容多智能体加固学习(Arel)中奖励再分配,以解决这两个挑战。 Arel使用注意机制来表征沿着轨迹(时间关注)对状态转换的动作的影响,以及每个代理在每个时间步骤(代理人注意)的影响。 Arel预测的重新分配奖励是密集的,可以与任何给定的MARL算法集成。我们评估了粒子世界环境的具有挑战性的任务和星际争霸多功能挑战。 arel导致粒子世界的奖励较高,并改善星际争端的胜利率与三个最先进的奖励再分配方法相比。我们的代码可在https://github.com/baicenxiao/arel获得。
translated by 谷歌翻译
我们开发了一个多功能辅助救援学习(MARL)方法,以了解目标跟踪的可扩展控制策略。我们的方法可以处理任意数量的追求者和目标;我们显示出现的任务,该任务包括高达1000追踪跟踪1000个目标。我们使用分散的部分可观察的马尔可夫决策过程框架来模拟追求者作为接受偏见观察(范围和轴承)的代理,了解使用固定的未知政策的目标。注意机制用于参数化代理的价值函数;这种机制允许我们处理任意数量的目标。熵 - 正规的脱助政策RL方法用于培训随机政策,我们讨论如何在追求者之间实现对冲行为,尽管有完全分散的控制执行,但仍然导致合作较弱的合作形式。我们进一步开发了一个掩蔽启发式,允许训练较少的问题,少量追求目标和在更大的问题上执行。进行彻底的仿真实验,消融研究和对现有技术算法的比较,以研究对不同数量的代理和目标性能的方法和鲁棒性的可扩展性。
translated by 谷歌翻译
在合作多智能体增强学习(Marl)中的代理商的创造和破坏是一个批判性的研究领域。当前的Marl算法通常认为,在整个实验中,组内的代理数量仍然是固定的。但是,在许多实际问题中,代理人可以在队友之前终止。这次早期终止问题呈现出挑战:终止的代理人必须从本集团的成功或失败中学习,这是超出其自身存在的成败。我们指代薪资奖励的传播价值作为遣返代理商作为追索的奖励作为追索权。当前的MARL方法通过将这些药剂放在吸收状态下,直到整组试剂达到终止条件,通过将这些药剂置于终止状态来处理该问题。虽然吸收状态使现有的算法和API能够在没有修改的情况下处理终止的代理,但存在实际培训效率和资源使用问题。在这项工作中,我们首先表明样本复杂性随着系统监督学习任务中的吸收状态的数量而增加,同时对变量尺寸输入更加强大。然后,我们为现有的最先进的MARL算法提出了一种新颖的架构,它使用注意而不是具有吸收状态的完全连接的层。最后,我们展示了这一新颖架构在剧集中创建或销毁的任务中的标准架构显着优于标准架构以及标准的多代理协调任务。
translated by 谷歌翻译
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in singleagent settings. We present an actor-critic algorithm that trains decentralized policies in multiagent settings, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multiagent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译
协作多代理增强学习(MARL)已在许多实际应用中广泛使用,在许多实际应用中,每个代理商都根据自己的观察做出决定。大多数主流方法在对分散的局部实用程序函数进行建模时,将每个局部观察结果视为完整的。但是,他们忽略了这样一个事实,即可以将局部观察信息进一步分为几个实体,只有一部分实体有助于建模推理。此外,不同实体的重要性可能会随着时间而变化。为了提高分散政策的性能,使用注意机制用于捕获本地信息的特征。然而,现有的注意模型依赖于密集的完全连接的图,并且无法更好地感知重要状态。为此,我们提出了一个稀疏的状态MARL(S2RL)框架,该框架利用稀疏的注意机制将无关的信息丢弃在局部观察中。通过自我注意力和稀疏注意机制估算局部效用函数,然后将其合并为标准的关节价值函数和中央评论家的辅助关节价值函数。我们将S2RL框架设计为即插即用的模块,使其足够一般,可以应用于各种方法。关于Starcraft II的广泛实验表明,S2RL可以显着提高许多最新方法的性能。
translated by 谷歌翻译
Offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets, which is an important step toward the deployment of multi-agent systems in real-world applications. However, in practice, each individual behavior policy that generates multi-agent joint trajectories usually has a different level of how well it performs. e.g., an agent is a random policy while other agents are medium policies. In the cooperative game with global reward, one agent learned by existing offline MARL often inherits this random policy, jeopardizing the performance of the entire team. In this paper, we investigate offline MARL with explicit consideration on the diversity of agent-wise trajectories and propose a novel framework called Shared Individual Trajectories (SIT) to address this problem. Specifically, an attention-based reward decomposition network assigns the credit to each agent through a differentiable key-value memory mechanism in an offline manner. These decomposed credits are then used to reconstruct the joint offline datasets into prioritized experience replay with individual trajectories, thereafter agents can share their good trajectories and conservatively train their policies with a graph attention network (GAT) based critic. We evaluate our method in both discrete control (i.e., StarCraft II and multi-agent particle environment) and continuous control (i.e, multi-agent mujoco). The results indicate that our method achieves significantly better results in complex and mixed offline multi-agent datasets, especially when the difference of data quality between individual trajectories is large.
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译
Many real-world problems, such as network packet routing and the coordination of autonomous vehicles, are naturally modelled as cooperative multi-agent systems. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actorcritic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.
translated by 谷歌翻译
在本文中,我们认为合作的多代理强化学习(MARL)具有稀疏的奖励。为了解决这个问题,我们提出了一种名为Maser:MARL的新方法,并具有从经验重播缓冲区产生的子目标。在广泛使用的集中式培训的假设下,通过分散执行和对MARL的Q值分解的一致性,Maser通过考虑单个Q值和总Q值来自动为多个代理人生成适当的子目标。然后,Maser根据与Q学习相关的可行表示为每个代理设计个人固有奖励,以便代理人达到其子目标,同时最大化联合行动值。数值结果表明,与其他最先进的MARL算法相比,Maser的表现明显优于Starcraft II微管理基准。
translated by 谷歌翻译
在复杂的协调问题中,深层合作多智能经纪增强学习(Marl)的高效探索仍然依然存在挑战。在本文中,我们介绍了一种具有奇妙驱动的探索的新型情节多功能钢筋学习,称为EMC。我们利用对流行分解的MARL算法的洞察力“诱导的”个体Q值,即用于本地执行的单个实用程序功能,是本地动作观察历史的嵌入,并且可以捕获因奖励而捕获代理之间的相互作用在集中培训期间的反向化。因此,我们使用单独的Q值的预测误差作为协调勘探的内在奖励,利用集肠内存来利用探索的信息经验来提高政策培训。随着代理商的个人Q值函数的动态捕获了国家的新颖性和其他代理人的影响,我们的内在奖励可以促使对新或有前途的国家的协调探索。我们通过教学实例说明了我们的方法的优势,并展示了在星际争霸II微互动基准中挑战任务的最先进的MARL基础上的其显着优势。
translated by 谷歌翻译
Starcraft II多代理挑战(SMAC)被创建为合作多代理增强学习(MARL)的具有挑战性的基准问题。 SMAC专注于星际争霸微管理的问题,并假设每个单元都由独立行动并仅具有本地信息的学习代理人单独控制;假定通过分散执行(CTDE)进行集中培训。为了在SMAC中表现良好,MARL算法必须处理多机构信贷分配和联合行动评估的双重问题。本文介绍了一种新的体系结构Transmix,这是一个基于变压器的联合行动值混合网络,与其他最先进的合作MARL解决方案相比,我们显示出高效且可扩展的。 Transmix利用变形金刚学习更丰富的混合功能的能力来结合代理的个人价值函数。它与以前的SMAC场景上的工作相当,并且在困难场景上胜过其他技术,以及被高斯噪音损坏的场景以模拟战争的雾。
translated by 谷歌翻译
在人工多智能体系中,学习协作政策的能力是基于代理商的沟通技巧,他们必须能够编码从环境中收到的信息,并学习如何与手头任务所要求的其他代理分享它。我们介绍了一个深度加强学习方法,连接驱动的通信(CDC),促进了多种子体协作行为的出现,仅通过经验。代理被建模为加权图的节点,其状态相关的边缘编码可以交换的对方式。我们介绍了一种依赖于图形的关注机制,可以控制代理的传入消息如何加权。此机制完全核对图表所表示的系统的当前状态,并在捕获信息如何在图中流动的扩散过程中构建。图形拓扑未被假定已知先验,但在代理人的观察中动态依赖于代理人,并以端到端的方式与注意机制和政策同时学习。我们的经验结果表明,CDC能够学习有效的协作政策,并可以在合作导航任务上过度执行竞争学习算法。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
多代理深度增强学习(Marl)缺乏缺乏共同使用的评估任务和标准,使方法之间的比较困难。在这项工作中,我们提供了一个系统评估,并比较了三种不同类别的Marl算法(独立学习,集中式多代理政策梯度,价值分解)在各种协作多智能经纪人学习任务中。我们的实验是在不同学习任务中作为算法的预期性能的参考,我们为不同学习方法的有效性提供了见解。我们开源EPYMARL,它将Pymarl CodeBase扩展到包括其他算法,并允许灵活地配置算法实现细节,例如参数共享。最后,我们开源两种环境,用于多智能经纪研究,重点关注稀疏奖励下的协调。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
在本文中,我们提出了一个名为“星际争霸多代理挑战”的新颖基准,代理商学习执行多阶段任务并使用没有精确奖励功能的环境因素。以前的挑战(SMAC)被认为是多名强化学习的标准基准,主要涉及确保所有代理人仅通过具有明显的奖励功能的精细操纵而合作消除接近对手。另一方面,这一挑战对MARL算法的探索能力有效地学习隐式多阶段任务和环境因素以及微控制感兴趣。这项研究涵盖了进攻和防御性场景。在进攻情况下,代理商必须学会先寻找对手,然后消除他们。防御性场景要求代理使用地形特征。例如,代理需要将自己定位在保护结构后面,以使敌人更难攻击。我们研究了SMAC+下的MARL算法,并观察到最近的方法在与以前的挑战类似,但在进攻情况下表现不佳。此外,我们观察到,增强的探索方法对性能有积极影响,但无法完全解决所有情况。这项研究提出了未来研究的新方向。
translated by 谷歌翻译
This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes tasks with discrete and continuous actions, as well as tasks that involve hundreds of agents. The three approaches are evaluated against each other using different neural architectures, training procedures, and reward structures. Using deep reinforcement learning with a curriculum learning scheme, our approach can solve problems that were previously considered intractable by most multi-agent reinforcement learning algorithms. We show that policy gradient methods tend to outperform both temporal-difference and actor-critic methods when using feed-forward neural architectures. We also show that recurrent policies, while more difficult to train, outperform feed-forward policies on our evaluation tasks.
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches quickly become infeasible as the number of agents scale, and fully decentralized approaches can miss important opportunities for information sharing and coordination. Furthermore, not all agents are equal -- in some cases, individual agents may not even have the ability to send communication to other agents or explicitly model other agents. This paper considers the case where there is a single, powerful, \emph{central agent} that can observe the entire observation space, and there are multiple, low-powered \emph{local agents} that can only receive local observations and are not able to communicate with each other. The central agent's job is to learn what message needs to be sent to different local agents based on the global observations, not by centrally solving the entire problem and sending action commands, but by determining what additional information an individual agent should receive so that it can make a better decision. In this work we present our MARL algorithm \algo, describe where it would be most applicable, and implement it in the cooperative navigation and multi-agent walker domains. Empirical results show that 1) learned communication does indeed improve system performance, 2) results generalize to heterogeneous local agents, and 3) results generalize to different reward structures.
translated by 谷歌翻译
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multiagent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
translated by 谷歌翻译