在本文中,我们研究了对抗机学习(AML)的扩大攻击表面以及对车辆到感冒物(V2M)服务的潜在攻击。我们提出了一项对多阶段灰盒攻击的预期研究,该研究可以与白盒攻击相当。对手旨在欺骗网络边缘的目标机器学习(ML)分类器,以错误地分类微电网的传入能量请求。通过推理攻击,对手可以从智能微电网和5G GNODEB之间的通信中收集实时数据,以训练边缘目标分类器的代理(即阴影)模型。为了预测对手收集实时数据实例能力的相关影响,我们研究了五种不同的情况,每个案例代表了对手收集的不同数量的实时数据实例。在完整数据集中训练的六个ML模型中,K-Nearest邻居(K-NN)被选为替代模型,通过模拟,我们证明了多阶段的灰色框攻击能够误导ML分类器和ML分类器和与白盒攻击相比,使用40%的数据,导致高达73.2%的逃避率(EIR)最高73.2%。
translated by 谷歌翻译
由于它们在各个域中的大量成功,深入的学习技术越来越多地用于设计网络入侵检测解决方案,该解决方案检测和减轻具有高精度检测速率和最小特征工程的未知和已知的攻击。但是,已经发现,深度学习模型容易受到可以误导模型的数据实例,以使所谓的分类决策不正确(对抗示例)。此类漏洞允许攻击者通过向恶意流量添加小的狡猾扰动来逃避检测并扰乱系统的关键功能。在计算机视觉域中广泛研究了深度对抗学习的问题;但是,它仍然是网络安全应用中的开放研究领域。因此,本调查探讨了在网络入侵检测领域采用对抗机器学习的不同方面的研究,以便为潜在解决方案提供方向。首先,调查研究基于它们对产生对抗性实例的贡献来分类,评估ML的NID对逆势示例的鲁棒性,并捍卫这些模型的这种攻击。其次,我们突出了调查研究中确定的特征。此外,我们讨论了现有的通用对抗攻击对NIDS领域的适用性,启动拟议攻击在现实世界方案中的可行性以及现有缓解解决方案的局限性。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译
Although machine learning based algorithms have been extensively used for detecting phishing websites, there has been relatively little work on how adversaries may attack such "phishing detectors" (PDs for short). In this paper, we propose a set of Gray-Box attacks on PDs that an adversary may use which vary depending on the knowledge that he has about the PD. We show that these attacks severely degrade the effectiveness of several existing PDs. We then propose the concept of operation chains that iteratively map an original set of features to a new set of features and develop the "Protective Operation Chain" (POC for short) algorithm. POC leverages the combination of random feature selection and feature mappings in order to increase the attacker's uncertainty about the target PD. Using 3 existing publicly available datasets plus a fourth that we have created and will release upon the publication of this paper, we show that POC is more robust to these attacks than past competing work, while preserving predictive performance when no adversarial attacks are present. Moreover, POC is robust to attacks on 13 different classifiers, not just one. These results are shown to be statistically significant at the p < 0.001 level.
translated by 谷歌翻译
车祸(IOV)可以促进连接车辆(CV),自动驾驶汽车(AV)和其他IOV实体之间的无缝连通性。 IOV网络的入侵检测系统(IDS)可以依靠机器学习(ML)来保护车辆内网络免受网络攻击。基于区块链的联合森林(BFF)可用于根据IOV实体的数据训练ML模型,同时保护数据的机密性并降低对数据篡改的风险。但是,以这种方式创建的ML模型仍然容易受到逃避,中毒和探索性攻击的影响。本文研究了各种可能的对抗性示例对BFF-ID的影响。我们提出了整合统计检测器来检测和提取未知的对抗样品。通过将未知检测的样品包括在检测器的数据集中,我们使用附加模型来增强BFF-ID,以检测原始已知攻击和新的对抗性输入。统计对手检测器以50和100个输入样本的样本量确信对对抗性示例。此外,增强的BFF-IDS(BFF-IDS(AUG))成功地减轻了以上96%的精度。通过这种方法,每当检测到对抗样本并随后采用BFF-ID(AUG)作为主动安全模型时,该模型将继续在沙箱中增强。因此,统计对抗检测器的拟议集成以及随后使用检测到的对抗样本对BFF-ID的增强,为对抗性例子和其他未知攻击提供了可持续的安全框架。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译
第五代(5G)网络必须支持数十亿个异质设备,同时保证最佳服务质量(QoS)。这样的要求是不可能单独满足人类努力的,而机器学习(ML)代表了5G中的核心资产。然而,已知ML容易受到对抗例子的影响。此外,正如我们的论文所表明的那样,5G上下文暴露于另一种类型的对抗ML攻击,而现有威胁模型无法正式化。由于缺乏可用于对抗性ML研究的ML供电的5G设备,因此对此类风险的积极评估也有挑战性。为了解决这些问题,我们提出了一种新型的对抗ML威胁模型,该模型特别适合5G场景,不可知ML所解决的精确函数。与现有的ML威胁模型相反,我们的攻击不需要对目标5G系统的任何妥协,同时由于QoS保证和5G网络的开放性质仍然可行。此外,我们为基于公共数据的现实ML安全评估提供了一个原始框架。我们主动评估我们的威胁模型对5G中设想的ML的6个应用。我们的攻击会影响训练和推理阶段,可能会降低最先进的ML系统的性能,并且与以前的攻击相比,进入障碍较低。
translated by 谷歌翻译
时间序列异常检测在统计,经济学和计算机科学中进行了广泛的研究。多年来,使用基于深度学习的方法为时间序列异常检测提出了许多方法。这些方法中的许多方法都在基准数据集上显示了最先进的性能,给人一种错误的印象,即这些系统在许多实用和工业现实世界中都可以强大且可部署。在本文中,我们证明了最先进的异常检测方法的性能通过仅在传感器数据中添加小的对抗扰动来实质性地降解。我们使用不同的评分指标,例如预测错误,异常和分类评分,包括几个公共和私人数据集,从航空航天应用程序,服务器机器到发电厂的网络物理系统。在众所周知的对抗攻击中,来自快速梯度标志方法(FGSM)和预计梯度下降(PGD)方法,我们证明了最新的深神经网络(DNNS)和图形神经网络(GNNS)方法,这些方法声称这些方法是要对异常进行稳健,并且可能已集成在现实生活中,其性能下降到低至0%。据我们最好的理解,我们首次证明了针对对抗攻击的异常检测系统的脆弱性。这项研究的总体目标是提高对时间序列异常检测器的对抗性脆弱性的认识。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
本文提出了对基于深度学习的无线信号分类器的信道感知对抗攻击。有一个发射器,发送具有不同调制类型的信号。每个接收器使用深神经网络以将其超空气接收信号分类为调制类型。与此同时,对手将对手扰动(受到电力预算的影响)透射到欺骗接收器,以在作为透射信号叠加和对抗扰动的叠加接收的分类信号中进行错误。首先,当在设计对抗扰动时不考虑通道时,这些逃避攻击被证明会失败。然后,通过考虑来自每个接收器的对手的频道效应来提出现实攻击。在示出频道感知攻击是选择性的(即,它只影响扰动设计中的信道中考虑的接收器),通过制作常见的对抗扰动来呈现广播对抗攻击,以在不同接收器处同时欺骗分类器。通过占通道,发射机输入和分类器模型可用的不同信息,将调制分类器对过空中侵犯攻击的主要脆弱性。最后,引入了基于随机平滑的经过认证的防御,即增加了噪声训练数据,使调制分类器鲁棒到对抗扰动。
translated by 谷歌翻译
功耗数据非常有用,因为它允许优化电网,检测异常并防止故障,最重要的是,对不同的研究目的是有用的。然而,使用功耗数据提高了重大隐私问题,因为此数据通常属于电力公司的客户。作为解决方案,我们提出了一种方法来生成忠实地模仿原件的合成功耗样本,而是从客户端及其身份中脱离。我们的方法基于生成的对抗性网络(GANS)。我们的贡献是双重的。首先,我们专注于所生成数据的质量,这不是一个简单的任务,因为没有可用的标准评估方法。然后,我们研究了向我们神经网络培训集成员提供的隐私保障。作为隐私的最低要求,我们要求我们的神经网络对成员推论攻击强大,因为除了呈现自己的隐私威胁之外,对于进一步的攻击,提供了一个网关。我们发现,在算法提供的隐私和绩效之间存在妥协。
translated by 谷歌翻译
Machine learning (ML) models, e.g., deep neural networks (DNNs), are vulnerable to adversarial examples: malicious inputs modified to yield erroneous model outputs, while appearing unmodified to human observers. Potential attacks include having malicious content like malware identified as legitimate or controlling vehicle behavior. Yet, all existing adversarial example attacks require knowledge of either the model internals or its training data. We introduce the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge. Indeed, the only capability of our black-box adversary is to observe labels given by the DNN to chosen inputs. Our attack strategy consists in training a local model to substitute for the target DNN, using inputs synthetically generated by an adversary and labeled by the target DNN. We use the local substitute to craft adversarial examples, and find that they are misclassified by the targeted DNN. To perform a real-world and properly-blinded evaluation, we attack a DNN hosted by MetaMind, an online deep learning API. We find that their DNN misclassifies 84.24% of the adversarial examples crafted with our substitute. We demonstrate the general applicability of our strategy to many ML techniques by conducting the same attack against models hosted by Amazon and Google, using logistic regression substitutes. They yield adversarial examples misclassified by Amazon and Google at rates of 96.19% and 88.94%. We also find that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.
translated by 谷歌翻译
当系统的全面了解时然而,这种技术在灰盒设置中行动不成功,攻击者面部模板未知。在这项工作中,我们提出了一种具有新开发的目标函数的相似性的灰度逆势攻击(SGADV)技术。 SGAdv利用不同的评分来产生优化的对抗性实例,即基于相似性的对抗性攻击。这种技术适用于白盒和灰度箱攻击,针对使用不同分数确定真实或调用用户的身份验证系统。为了验证SGAdv的有效性,我们对LFW,Celeba和Celeba-HQ的面部数据集进行了广泛的实验,反对白盒和灰度箱设置的面部和洞察面的深脸识别模型。结果表明,所提出的方法显着优于灰色盒设置中的现有的对抗性攻击技术。因此,我们总结了开发对抗性示例的相似性基础方法可以令人满意地迎合去认证的灰度箱攻击场景。
translated by 谷歌翻译
Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.
translated by 谷歌翻译
恶意软件开发人员使用诸如压缩,加密和混淆等技术的组合来绕过反病毒软件。使用抗分析技术的恶意软件可以绕过基于AI的防病毒软件和恶意软件分析工具。因此,对包装文件进行分类是最大的挑战之一。如果恶意软件分类器学习包装工的功能,而不是恶意软件的功能,就会出现问题。用意外错误的数据训练模型变成中毒攻击,对抗攻击和逃避攻击。因此,研究人员应考虑包装以构建适当的恶意软件分类器模型。在本文中,我们提出了一个多步框架,用于分类和识别包装样本,其中包括伪最佳的功能选择,基于机器学习的分类器和Packer识别步骤。在第一步中,我们使用购物车算法和置换重要性来预选重要的20个功能。在第二步中,每个模型都会学习20个预选功能,以分类具有最高性能的包装文件。结果,XGBoost以置换重要性了解了XGBoost预先选择的功能,其精度为99.67%,F1得分为99.46%,并且在曲线下的F1分数表现出最高的性能(f1)。 AUC)为99.98%。在第三步中,我们提出了一种新方法,该方法只能识别包装工,仅针对被分类为众所周知的包装的样品。
translated by 谷歌翻译
对基于机器学习的分类器以及防御机制的对抗攻击已在单一标签分类问题的背景下广泛研究。在本文中,我们将注意力转移到多标签分类,其中关于所考虑的类别中的关系的域知识可以提供自然的方法来发现不连贯的预测,即与培训数据之外的对抗的例子相关的预测分配。我们在框架中探讨这种直觉,其中一阶逻辑知识被转换为约束并注入半监督的学习问题。在此设置中,约束分类器学会满足边际分布的域知识,并且可以自然地拒绝具有不连贯预测的样本。尽管我们的方法在训练期间没有利用任何对攻击的知识,但我们的实验分析令人惊讶地推出了域名知识约束可以有效地帮助检测对抗性示例,特别是如果攻击者未知这样的约束。
translated by 谷歌翻译
在过去的几十年中,人工智能的兴起使我们有能力解决日常生活中最具挑战性的问题,例如癌症的预测和自主航行。但是,如果不保护对抗性攻击,这些应用程序可能不会可靠。此外,最近的作品表明,某些对抗性示例可以在不同的模型中转移。因此,至关重要的是避免通过抵抗对抗性操纵的强大模型进行这种可传递性。在本文中,我们提出了一种基于特征随机化的方法,该方法抵抗了八次针对测试阶段深度学习模型的对抗性攻击。我们的新方法包括改变目标网络分类器中的训练策略并选择随机特征样本。我们认为攻击者具有有限的知识和半知识条件,以进行最普遍的对抗性攻击。我们使用包括现实和合成攻击的众所周知的UNSW-NB15数据集评估了方法的鲁棒性。之后,我们证明我们的策略优于现有的最新方法,例如最强大的攻击,包括针对特定的对抗性攻击进行微调网络模型。最后,我们的实验结果表明,我们的方法可以确保目标网络并抵抗对抗性攻击的转移性超过60%。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)在各种现实世界的网络安全应用程序(例如网络和多媒体安全)中表现出了有希望的性能。但是,CNN结构的潜在脆弱性构成了主要的安全问题,因此不适合用于以安全为导向的应用程序,包括此类计算机网络。保护这些体系结构免受对抗性攻击,需要使用挑战性攻击的安全体系结构。在这项研究中,我们提出了一种基于合奏分类器的新型体系结构,该结构将1级分类(称为1C)的增强安全性与在没有攻击的情况下的传统2级分类(称为2C)的高性能结合在一起。我们的体系结构称为1.5级(Spritz-1.5c)分类器,并使用最终密度分类器,一个2C分类器(即CNNS)和两个并行1C分类器(即自动编码器)构造。在我们的实验中,我们通过在各种情况下考虑八次可能的对抗性攻击来评估我们提出的架构的鲁棒性。我们分别对2C和Spritz-1.5c体系结构进行了这些攻击。我们研究的实验结果表明,I-FGSM攻击对2C分类器的攻击成功率(ASR)是N-Baiot数据集训练的2C分类器的0.9900。相反,Spritz-1.5C分类器的ASR为0.0000。
translated by 谷歌翻译
人工智能(AI)将在蜂窝网络部署,配置和管理中发挥越来越多的作用。本文研究了AI驱动的6G无线电访问网络(RANS)的安全含义。尽管6G标准化的预期时间表仍在数年之外,但与6G安全有关的预标准化工作已经在进行中,并且将受益于基本和实验研究。Open Ran(O-Ran)描述了一个以行业为导向的开放式体系结构和用于使用AI控制的下一代架设的接口。考虑到这种体系结构,我们确定了对数据驱动网络和物理层元素,相应的对策和研究方向的关键威胁。
translated by 谷歌翻译