现有关于异常检测的作品(AD)依赖于人类注释者的清洁标签,这些标签在实践中获取昂贵。在这项工作中,我们提出了一种方法来利用弱/嘈杂标签(例如,由机器规则生成的检测恶意软件产生的风险评分),可获得异常检测的便宜。具体来说,我们建议Axpoe,这是从嘈杂标签中学习的异常检测算法的第一个框架。简而言之,Axpoe利用了专家(MOE)架构的混合物来鼓励从多个嘈杂来源的专门和可扩展的学习。它通过共享大多数模型参数来捕获嘈杂标签之间的相似性,同时通过构建“专家”子网络来鼓励专业化。为了进一步从嘈杂的标签中榨出信号,Ampoe将其用作输入功能来促进专家学习。在八个数据集(包括专有企业安全数据集)上进行了广泛的结果,证明了AXPOE的有效性,在该数据集中,它在不使用它的情况下可以提高34%的性能改进。此外,它的表现超过了13个带有等效网络参数和失败的领先基线。值得注意的是,AXPOE是模型不可替代的,可以实现任何基于神经网络的检测方法来处理嘈杂的标签,在此我们在多层感知器(MLP)和领先的AD方法Deepsad上都展示了其结果。
translated by 谷歌翻译
考虑到过去几十年中开发的一长串异常检测算法,它们如何在(i)(i)不同级别的监督,(ii)不同类型的异常以及(iii)嘈杂和损坏的数据方面执行?在这项工作中,我们通过(据我们所知)在55个名为Adbench的55个基准数据集中使用30个算法来回答这些关键问题。我们的广泛实验(总共93,654)确定了对监督和异常类型的作用的有意义的见解,并解锁了研究人员在算法选择和设计中的未来方向。借助Adbench,研究人员可以轻松地对数据集(包括我们从自然语言和计算机视觉域的贡献)对现有基线的新提出的方法进行全面和公平的评估。为了促进可访问性和可重复性,我们完全开源的Adbench和相应的结果。
translated by 谷歌翻译
异常检测(AD),将异常与正常数据分开,从安全性到医疗保健都有许多范围内的应用程序。尽管大多数以前的作品都被证明对具有完全或部分标记数据的案例有效,但由于标记对此任务特别乏味,因此设置在实践中较不常见。在本文中,我们专注于完全无监督的AD,其中包含正常样本和异常样本的整个培训数据集未标记。为了有效地解决这个问题,我们建议通过使用数据改进过程来提高接受自我监督表示的一类分类的鲁棒性。我们提出的数据完善方法基于单级分类器(OCCS)的集合,每个分类器均经过培训的训练数据子集。随着数据改进的改进,通过自我监督学习学到的表示的表示。我们在具有图像和表格数据的各种无监督的AD任务上演示了我们的方法。 CIFAR-10图像数据的异常比率为10% /甲状腺表格数据的2.5%异常比率,该方法的表现优于最先进的单级分类器,高于6.3 AUC和12.5平均精度 / 22.9 F1评分。 。
translated by 谷歌翻译
给定无监督的离群检测(OD)算法,我们如何在没有任何标签的新数据集上优化其超参数(S)(hp)?在这项工作中,我们解决了针对无监督的OD问题的具有挑战性的超参数优化,并提出了基于元学习的第一种称为HPOD的系统方法。HPOD利用现有的OD基准数据集中大量HP的先前性能,并传输此信息以在没有标签的新数据集上启用HP评估。此外,HPOD适应基于顺序模型的优化(最初是监督的)优化,以有效地识别有希望的HP。广泛的实验表明,HPOD可以与深(例如健壮的自动编码器)和浅层(例如,局部离群因子(LOF)和隔离林(Iforest forest(iforeSt))OD算法一起使用,在离散和连续的HP空间上都超出了大量的基准范围比LOF和Iforest的默认HPS平均提高了58%和66%的性能。
translated by 谷歌翻译
开放式视频异常检测(OpenVAD)旨在从视频数据中识别出异常事件,在测试中都存在已知的异常和新颖的事件。无监督的模型仅从普通视频中学到的模型适用于任何测试异常,但遭受高误报率的损失。相比之下,弱监督的方法可有效检测已知的异常情况,但在开放世界中可能会失败。我们通过将证据深度学习(EDL)和将流量(NFS)归一化为多个实例学习(MIL)框架来开发出一种新颖的OpenVAD问题的弱监督方法。具体而言,我们建议使用图形神经网络和三重态损失来学习训练EDL分类器的区分特征,在该特征中,EDL能够通过量化不确定性来识别未知异常。此外,我们制定了一种不确定性感知的选择策略,以获取清洁异常实例和NFS模块以生成伪异常。我们的方法通过继承无监督的NF和弱监督的MIL框架的优势来优于现有方法。多个现实世界视频数据集的实验结果显示了我们方法的有效性。
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
Deep Learning with noisy labels is a practically challenging problem in weakly supervised learning. The stateof-the-art approaches "Decoupling" and "Co-teaching+" claim that the "disagreement" strategy is crucial for alleviating the problem of learning with noisy labels. In this paper, we start from a different perspective and propose a robust learning paradigm called JoCoR, which aims to reduce the diversity of two networks during training. Specifically, we first use two networks to make predictions on the same mini-batch data and calculate a joint loss with Co-Regularization for each training example. Then we select small-loss examples to update the parameters of both two networks simultaneously. Trained by the joint loss, these two networks would be more and more similar due to the effect of Co-Regularization. Extensive experimental results on corrupted data from benchmark datasets including MNIST, CIFAR-10, CIFAR-100 and Clothing1M demonstrate that JoCoR is superior to many state-of-the-art approaches for learning with noisy labels.
translated by 谷歌翻译
深度学习在大量大数据的帮助下取得了众多域中的显着成功。然而,由于许多真实情景中缺乏高质量标签,数据标签的质量是一个问题。由于嘈杂的标签严重降低了深度神经网络的泛化表现,从嘈杂的标签(强大的培训)学习是在现代深度学习应用中成为一项重要任务。在本调查中,我们首先从监督的学习角度描述了与标签噪声学习的问题。接下来,我们提供62项最先进的培训方法的全面审查,所有这些培训方法都按照其方法论差异分为五个群体,其次是用于评估其优越性的六种性质的系统比较。随后,我们对噪声速率估计进行深入分析,并总结了通常使用的评估方法,包括公共噪声数据集和评估度量。最后,我们提出了几个有前途的研究方向,可以作为未来研究的指导。所有内容将在https://github.com/songhwanjun/awesome-noisy-labels提供。
translated by 谷歌翻译
图形离群值检测是一项具有许多应用程序的新兴但至关重要的机器学习任务。尽管近年来算法扩散,但缺乏标准和统一的绩效评估设置限制了它们在现实世界应用中的进步和使用。为了利用差距,我们(据我们所知)(据我们所知)第一个全面的无监督节点离群值检测基准为unod,并带有以下亮点:(1)评估骨架从经典矩阵分解到最新图形神经的骨架的14个方法网络; (2)在现实世界数据集上使用不同类型的注射异常值和自然异常值对方法性能进行基准测试; (3)通过在不同尺度的合成图上使用运行时和GPU存储器使用算法的效率和可扩展性。基于广泛的实验结果的分析,我们讨论了当前渠道方法的利弊,并指出了多个关键和有希望的未来研究方向。
translated by 谷歌翻译
我们提出了TOD,这是一个在分布式多GPU机器上进行有效且可扩展的离群检测(OD)的系统。 TOD背后的一个关键思想是将OD应用程序分解为基本张量代数操作。这种分解使TOD能够通过利用硬件和软件中深度学习基础架构的最新进展来加速OD计算。此外,要在有限内存的现代GPU上部署昂贵的OD算法,我们引入了两种关键技术。首先,可证明的量化可以加快OD计算的速度,并通过以较低的精度执行特定的浮点操作来减少其内存足迹,同时证明没有准确的损失。其次,为了利用多个GPU的汇总计算资源和内存能力,我们引入了自动批处理,该批次将OD计算分解为小批次,以便在多个GPU上并行执行。 TOD支持一套全面且多样化的OD算法,例如LOF,PCA和HBOS以及实用程序功能。对真实和合成OD数据集的广泛评估表明,TOD平均比领先的基于CPU的OD系统PYOD快11.6倍(最大加速度为38.9倍),并且比各种GPU底线要处理的数据集更大。值得注意的是,TOD可以直接整合其他OD算法,并提供了将经典OD算法与深度学习方法相结合的统一框架。这些组合产生了无限数量的OD方法,其中许多方法是新颖的,可以很容易地在TOD中进行原型。
translated by 谷歌翻译
Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications - for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
translated by 谷歌翻译
本文认为很少发生异常检测(FSAD),这是一种实用但研究不足的异常检测设置(AD),在训练中,每个类别仅提供有限数量的正常图像。到目前为止,现有的FSAD研究遵循用于标准AD的单层学习范式,并且尚未探索类别间的共同点。受到人类如何检测异常的启发,即将所讨论的图像与正常图像进行比较,我们在这里利用注册,这是一个固有跨越类别(​​作为代理任务)固有概括的图像对齐任务,以训练类别不稳定的异常异常检测模型。在测试过程中,通过比较测试图像的注册特征及其相应支持(正常)图像来识别异常。据我们所知,这是训练单个可推广模型的第一种FSAD方法,不需要对新类别进行重新训练或参数调整。实验结果表明,在MVTEC和MPDD基准上,所提出的方法在AUC中优于最先进的FSAD方法。
translated by 谷歌翻译
Owing to the prohibitive costs of generating large amounts of labeled data, programmatic weak supervision is a growing paradigm within machine learning. In this setting, users design heuristics that provide noisy labels for subsets of the data. These weak labels are combined (typically via a graphical model) to form pseudolabels, which are then used to train a downstream model. In this work, we question a foundational premise of the typical weakly supervised learning pipeline: given that the heuristic provides all ``label" information, why do we need to generate pseudolabels at all? Instead, we propose to directly transform the heuristics themselves into corresponding loss functions that penalize differences between our model and the heuristic. By constructing losses directly from the heuristics, we can incorporate more information than is used in the standard weakly supervised pipeline, such as how the heuristics make their decisions, which explicitly informs feature selection during training. We call our method Losses over Labels (LoL) as it creates losses directly from heuristics without going through the intermediate step of a label. We show that LoL improves upon existing weak supervision methods on several benchmark text and image classification tasks and further demonstrate that incorporating gradient information leads to better performance on almost every task.
translated by 谷歌翻译
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels. Recently, two-stage self-training methods have achieved significant improvements by self-generating pseudo labels and self-refining anomaly scores with these labels. As the pseudo labels play a crucial role, we propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training. Specifically, we first design a multi-head classification module (each head serves as a classifier) with a diversity loss to maximize the distribution differences of predicted pseudo labels across heads. This encourages the generated pseudo labels to cover as many abnormal events as possible. We then devise an iterative uncertainty pseudo label refinement strategy, which improves not only the initial pseudo labels but also the updated ones obtained by the desired classifier in the second stage. Extensive experimental results demonstrate the proposed method performs favorably against state-of-the-art approaches on the UCF-Crime, TAD, and XD-Violence benchmark datasets.
translated by 谷歌翻译
大数据具有巨大的量,高速度,多样性,价值符合性和不确定性的特征,这些特征带领知识从他们那里学习充满了挑战。随着众包的出现,可以按需获得多功能信息,以便易于参与人群的智慧,以促进知识学习过程。在过去的十三年中,AI社区的研究人员竭尽全力消除人群学习领域的障碍。这份集中的调查论文全面回顾了从系统的角度来研究众包学习的技术进步,其中包括数据,模型和学习过程的三个维度。除了审查现有的重要工作外,本文还特别强调在每个维度上提供一些有希望的蓝图,并讨论从我们过去的研究工作中学到的经验教训,这将为新的研究人员提供道路,并鼓励他们追求新的研究。贡献。
translated by 谷歌翻译
通过更换繁琐的手动收集地面真理标签,聚合多个弱监管源(WS)可以缓解多种机器学习应用中的数据标记瓶颈。然而,当前的现有技术不使用任何标记的训练数据的方法需要两个单独的建模步骤:基于WS源的基于WS源的概率潜在变量模型 - 使得在实践中很少 - 之后是下游模型训练。重要的是,建模的第一步不考虑下游模型的性能。为了解决这些警告,我们提出了一种直接学习下游模​​型的端到端方法,通过将其与先前概率后海报的概率标签最大化来直接学习下游模​​型。我们的结果表明,在下游测试集的最终模型性能方面,以及改善弱势监督源之间的依赖性的鲁棒性方面,对先前的工作进行了改进的性能。
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
异常检测旨在识别正常数据分布的偏差样本。对比学习提供了一种成功的样本表示方式,可以有效地歧视异常。但是,当在半监督环境下设置的训练中被未标记的异常样本污染时,当前基于对比的方法通常1)忽略训练数据之间的全面关系,导致次优的性能,2)需要微调,导致低效率的低效率。为了解决上述两个问题,在本文中,我们提出了一种新型的分层半监督对比学习(HSCL)框架,以抗污染异常检测。具体而言,HSCL分层调节了三个互补关系:样本到样本,样本到原型型和正常关系,通过对受污染数据的全面探索,扩大了正常样本和异常样本之间的歧视。此外,HSCL是一种端到端的学习方法,可以在不进行微调的情况下有效地学习判别性表示。 HSCL在多种方案中实现了最先进的性能,例如单级分类和跨数据库检测。广泛的消融研究进一步验证了每个考虑的关系的有效性。该代码可在https://github.com/gaoangw/hscl上找到。
translated by 谷歌翻译
异常检测旨在识别数据点,这些数据点显示了未标记数据集中大多数数据的系统偏差。一个普遍的假设是,可以使用干净的培训数据(没有异常),这在实践中通常会违反。我们提出了一种在存在与广泛模型兼容的未标记异常的情况下训练异常检测器的策略。这个想法是在更新模型参数时将二进制标签共同推断为每个基准(正常与异常)。受到异常暴露的启发(Hendrycks等人,2018年),该暴露考虑合成创建,标记为异常,我们因此使用了两个共享参数的损失的组合:一个用于正常参数,一个用于异常数据。然后,我们对参数和最可能(潜在)标签进行块坐标更新。我们在三个图像数据集,30个表格数据集和视频异常检测基准上使用几个主链模型进行了实验,对基线显示了一致且显着的改进。
translated by 谷歌翻译
无监督的时间序列异常检测对各种域中目标系统的潜在故障有助于。当前的最新时间序列异常检测器主要集中于设计高级神经网络结构和新的重建/预测学习目标,以尽可能准确地学习数据正常(正常模式和行为)。但是,这些单级学习方法可以被训练数据中未知异常(即异常污染)所欺骗。此外,他们的正常学习也缺乏对感兴趣异常的知识。因此,他们经常学习一个有偏见的,不准确的正态边界。本文提出了一种新型的单级学习方法,称为校准的一级分类,以解决此问题。我们的单级分类器以两种方式进行校准:(1)通过适应性地惩罚不确定的预测,这有助于消除异常污染的影响,同时强调单级模型对一级模型有信心的预测,并通过区分正常情况来确定(2)来自本机异常示例的样本,这些样本是根据原始数据基于原始数据模拟真实时间序列异常行为的。这两个校准导致耐污染的,异常的单级学习,从而产生了显着改善的正态性建模。对六个现实世界数据集进行的广泛实验表明,我们的模型大大优于12个最先进的竞争对手,并获得了6%-31%的F1分数提高。源代码可在\ url {https://github.com/xuhongzuo/couta}中获得。
translated by 谷歌翻译