神经网络的通用近似特性(UAP)对于深度学习至关重要,众所周知,广泛的神经网络是$ l^p $ norm和连续/统一规范中连续功能的通用近似概要。但是,确切的最小宽度,$ w _ {\ min} $,尚未对UAP进行彻底研究。最近,使用解码器模式编码器方案,\ citet {park2021mimine}发现$ w _ {\ min} = \ max(d_x+1,d_y)$ for $ l^p $ up of relu Networks和the $ c $ - relu+step网络,其中$ d_x,d_y $分别是输入和输出尺寸。在本文中,我们考虑具有任意激活功能的神经网络。我们证明,紧凑型域上功能的$ c $ uap和$ l^p $ -uap共享最小宽度的通用下限;也就是说,$ w^*_ {\ min} = \ max(d_x,d_y)$。特别是,只要输入或输出尺寸大于一个,就可以通过泄漏的relu网络来实现临界宽度,$ w^*_ {\ min} $,可以通过泄漏的relu网络来实现。我们的构建基于神经普通微分方程的近似能力以及通过神经网络近似流量图的能力。还讨论了非单极管或不连续的激活函数情况和一维情况。
translated by 谷歌翻译
深度学习已在数据科学和自然科学领域进行了重要应用。一些研究将深层神经网络与动态系统联系起来,但网络结构仅限于残留网络。众所周知,残留网络可以被视为动态系统的数值离散化。在本文中,我们回到了经典的网络结构,并证明香草馈电网络也可能是动态系统的数值离散化,其中网络的宽度等于输入和输出的维度。我们的证明是基于泄漏 - RELU函数的属性和求解微分方程的分裂方法的数值技术。我们的结果可以为理解前馈神经网络的近似特性提供新的观点。
translated by 谷歌翻译
众所周知,$ O(n)$参数足以让神经网络记住任意$ N $ INPUT-LABE标签对。通过利用深度,我们显示$ O(n ^ {2/3})$参数足以在输入点的分离的温和条件下记住$ n $对。特别是,更深的网络(即使是宽度为3美元),也会显示比浅网络更有成对,这也同意最近的作品对函数近似的深度的好处。我们还提供支持我们理论发现的经验结果。
translated by 谷歌翻译
我们研究了深层神经网络的表达能力,以在扩张的转移不变空间中近似功能,这些空间被广泛用于信号处理,图像处理,通信等。相对于神经网络的宽度和深度估算了近似误差界限。网络构建基于深神经网络的位提取和数据拟合能力。作为我们主要结果的应用,获得了经典函数空间(例如Sobolev空间和BESOV空间)的近似速率。我们还给出了$ l^p(1 \ le p \ le \ infty)$近似误差的下限,这表明我们的神经网络的构建是渐近的最佳选择,即最大程度地达到对数因素。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译
单调功能和数据集在各种应用中都会出现。我们研究单调数据集的插值问题:输入是带有$ n $点的单调数据集,目标是找到一个大小和深度有效的单调神经网络,具有非负参数和阈值单元,可以插入数据放。我们表明,单调数据集无法通过深度$ 2 $的单调网络插值。另一方面,我们证明,对于每个单调数据集,在$ \ mathbb {r}^d $中$ n $点,存在一个插值的单调网络,该网络的深度为$ 4 $ $ 4 $和size $ o(nd)$。我们的插值结果意味着,每个单调功能超过$ [0,1]^d $可以通过DEPTH-4单调网络任意地近似,从而改善了先前最著名的深度构建$ d+1 $。最后,基于布尔电路复杂性的结果,我们表明,当近似单调函数时,具有正参数的电感偏差会导致神经元数量的超顺式爆炸。
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
其中的许多神经网络能够复制复杂的任务或功能的原因之一是其普遍性财产。在过去的几十年里已经在提供单一或类神经网络的构造性证明见过很多尝试。本文是为了提供一大类,包括激活现有的大多数激活和超越的普遍性统一的和建设性的框架。在框架的心脏是神经网络近似标识的概念。事实证明,大多数现有的激活是神经网络近似的标志,因此在连续的函数对致密的空间普遍。该框架诱导几个优点。首先,它是建设性与功能分析,概率论,和数值分析的基本手段。其次,它是第一个统一的尝试,其有效期为大多数现有的激活。第三,作为一个以产品,该框架提供了一些现有的激活功能,包括米什司炉ELU,格鲁,等四的第一所大学证明,它发现带有普遍性的保证财产新的激活。事实上,任何活化\ textemdash其$ \ķ$阶导数,以$ \ķ$为整数,是积并且基本上界定\ textemdash是普遍的。第五,对于给定的激活和容错,框架精确地提供了具有预定数量的神经元,和重量/偏差的值中对应的一个隐藏神经网络的体系结构。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
We study expressive power of shallow and deep neural networks with piece-wise linear activation functions. We establish new rigorous upper and lower bounds for the network complexity in the setting of approximations in Sobolev spaces. In particular, we prove that deep ReLU networks more efficiently approximate smooth functions than shallow networks. In the case of approximations of 1D Lipschitz functions we describe adaptive depth-6 network architectures more efficient than the standard shallow architecture.
translated by 谷歌翻译
This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any H\"{o}lder smooth function up to a given approximation error in H\"{o}lder norms in such a way that all weights of this neural network are bounded by $1$. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
translated by 谷歌翻译
在本文中,我们通过任意大量的隐藏层研究了全连接的前馈深度Relu Ann,我们证明了在假设不正常化的概率密度函数下,在训练中具有随机初始化的GD优化方法的风险的融合在考虑的监督学习问题的输入数据的概率分布是分段多项式,假设目标函数(描述输入数据与输出数据之间的关系)是分段多项式,并且在假设风险函数下被认为的监督学习问题至少承认至少一个常规全球最低限度。此外,在浅句的特殊情况下只有一个隐藏的层和一维输入,我们还通过证明对每个LipsChitz连续目标功能的培训来验证这种假设,风险景观中存在全球最小值。最后,在具有Relu激活的深度广域的训练中,我们还研究梯度流(GF)差分方程的解决方案,并且我们证明每个非发散的GF轨迹会聚在临界点的多项式收敛速率(在限制意义上FR \'ECHET子提让性)。我们的数学融合分析造成了来自真实代数几何的工具,例如半代数函数和广义Kurdyka-Lojasiewicz不等式,从功能分析(如Arzel \)Ascoli定理等工具,在来自非本地结构的工具中作为限制FR \'echet子分子的概念,以及具有固定架构的浅印刷ANN的实现功能的事实形成由Petersen等人显示的连续功能集的封闭子集。
translated by 谷歌翻译
在本文中,我们用relu,正弦和$ 2^x $构建神经网络作为激活功能。对于$ [0,1]^d $定义的一般连续$ f $,带有连续模量$ \ omega_f(\ cdot)$,我们构造了Relu-sine- $ 2^x $网络,这些网络享受近似值$ \ MATHCAL {o }(\ omega_f(\ sqrt {d})\ cdot2^{ - m}+\ omega_ {f} \ in \ Mathbb {n}^{+} $表示与网络宽度相关的超参数。结果,我们可以构建Relu-Sine- $ 2^x $网络,其深度为$ 5 $和宽度$ \ max \ left \ weft \ {\ left \ lceil2d^{3/2} \ left(\ frac {3 \ mu}) {\ epsilon} \ right)^{1/{\ alpha}} \ right \ rceil,2 \ left \ lceil \ log_2 \ frac {3 \ mu d^{\ alpha/2}} \ rceil+2 \ right \} $ tht \ Mathcal {h} _ {\ mu}^{\ alpha}([0,1]^d)$近似$ f \以$ l^p $ norm $ p \在[1,\ infty)$中的测量,其中$ \ mathcal {h} _ {\ mu}^{\ alpha}(\ alpha}([0,1]^d)$表示H \“ $ [0,1]^d $定义的旧连续函数类,带有订单$ \ alpha \ in(0,1] $和常数$ \ mu> 0 $。因此,relu-sine- $ 2^x $网络克服了$ \ Mathcal {h} _ {\ mu}^{\ alpha}([0,1]^d)$。除了其晚餐表达能力外,由relu-sine- $ 2实施的功能,也克服了维度的诅咒。 ^x $网络是(广义)可区分的,使我们能够将SGD应用于训练。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
We generalize the classical universal approximation theorem for neural networks to the case of complex-valued neural networks. Precisely, we consider feedforward networks with a complex activation function $\sigma : \mathbb{C} \to \mathbb{C}$ in which each neuron performs the operation $\mathbb{C}^N \to \mathbb{C}, z \mapsto \sigma(b + w^T z)$ with weights $w \in \mathbb{C}^N$ and a bias $b \in \mathbb{C}$, and with $\sigma$ applied componentwise. We completely characterize those activation functions $\sigma$ for which the associated complex networks have the universal approximation property, meaning that they can uniformly approximate any continuous function on any compact subset of $\mathbb{C}^d$ arbitrarily well. Unlike the classical case of real networks, the set of "good activation functions" which give rise to networks with the universal approximation property differs significantly depending on whether one considers deep networks or shallow networks: For deep networks with at least two hidden layers, the universal approximation property holds as long as $\sigma$ is neither a polynomial, a holomorphic function, or an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if the real part or the imaginary part of $\sigma$ is not a polyharmonic function.
translated by 谷歌翻译
我们研究了使用前馈神经网络实施其支持集的同时近似紧凑型积分功能的问题。我们的第一个主要结果将这个“结构化”近似问题转录为普遍性问题。我们通过在空间上构建通常的拓扑结构来做到这一点,$ l^1 _ {\ propatatorName {loc}}(\ m athbb {r}^d,\ m athbb {r}^d)locally-intellable-intellable-intellable-intellable-intellable-in紧凑型函数只能通过具有匹配的离散支持的函数来近似于$ l^1 $ norm。我们建立了Relu Feedforwward网络的普遍性,并在此精致拓扑结构中具有双线性池层。因此,我们发现具有双线性池的Relu FeedForward网络可以在实施其离散支持的同时近似紧凑的功能。我们在紧凑型Lipschitz函数的致密亚类中得出了通用近似定理的定量均匀版本。该定量结果表达了通过目标函数的规律性,其基本支持的度量和直径以及输入和输出空间的尺寸来构建此relu网络所需的双线性池层层的深度,宽度和数量。相反,我们表明多项式回归器和分析前馈网络在该空间中并非通用。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
直到最近,神经网络在机器学习中的应用几乎完全依赖于实际网络。然而,它最近观察到,该复合值的神经网络(CVNNS)在应用中表现出卓越的性能,其中输入自然复合值,例如MRI指纹识别。虽然现实价值网络的数学理论已经达到了一定程度的成熟度,但这远远不适用于复合网络。在本文中,我们通过提供近似美元的Compact Qualets上的Compact Value的神经网络上的Compact-valued神经网络,通过提供明确的定量误差界来分析复合网络的表达性。激活函数,由$ \ sigma(z)= \ mathrm {creu}(| z | - 1)\,\ mathrm {sgn}(z)$,它是实际使用的最受欢迎的复杂激活功能之一。我们表明,衍生的近似值率在Modroleu网络类中的最佳(最多为日志因子),其具有适度增长的重量。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译