While the interaction of ultra-intense ultra-short laser pulses with near- and overcritical plasmas cannot be directly observed, experimentally accessible quantities (observables) often only indirectly give information about the underlying plasma dynamics. Furthermore, the information provided by observables is incomplete, making the inverse problem highly ambiguous. Therefore, in order to infer plasma dynamics as well as experimental parameter, the full distribution over parameters given an observation needs to considered, requiring that models are flexible and account for the information lost in the forward process. Invertible Neural Networks (INNs) have been designed to efficiently model both the forward and inverse process, providing the full conditional posterior given a specific measurement. In this work, we benchmark INNs and standard statistical methods on synthetic electron spectra. First, we provide experimental results with respect to the acceptance rate, where our results show increases in acceptance rates up to a factor of 10. Additionally, we show that this increased acceptance rate also results in an increased speed-up for INNs to the same extent. Lastly, we propose a composite algorithm that utilizes INNs and promises low runtimes while preserving high accuracy.
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
深度学习(DL)逆技术增加了人工电磁材料(AEM)设计的速度,提高了所得装置的质量。许多DL逆技术在多个AEM设计任务中成功地成功,但要比较,对比度和评估各种技术,澄清逆问题的潜在弊端是至关重要的。在这里,我们审查最先进的方法,并对深度学习逆方法进行全面调查,对AEM设计进行深度学习逆方法和可逆和有条件可逆的神经网络。我们可以轻松访问和快速可实现的AEM设计基准,该基准提供了一种有效地确定最适合解决不同设计挑战的DL技术的方法。我们的方法是通过对重复模拟的限制和易于集成度量的限制,我们提出的是任何AEM设计问题的相对弊端。我们表明,由于问题变得越来越弊,无论模拟约束如何,带有边界损耗(NA)的神经伴随都会产生更好的解决方案。在简单的AEM设计任务中,当模拟有限时,直接神经网络(NN)更好,而混合密度网络(MDN)和条件变化自动编码器(VAE)预测的几何形状可以通过持续的采样和重新模拟来改进。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
Non-equilibrium chemistry is a key process in the study of the InterStellar Medium (ISM), in particular the formation of molecular clouds and thus stars. However, computationally it is among the most difficult tasks to include in astrophysical simulations, because of the typically high (>40) number of reactions, the short evolutionary timescales (about $10^4$ times less than the ISM dynamical time) and the characteristic non-linearity and stiffness of the associated Ordinary Differential Equations system (ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to traditional ODE time integrators for stiff thermo-chemical systems, i.e. up to molecular hydrogen formation (9 species and 46 reactions). Testing different chemical networks in a wide range of densities ($-2< \log n/{\rm cm}^{-3}< 3$) and temperatures ($1 < \log T/{\rm K}< 5$), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to properly capture the sudden chemical and thermal variations a Deep Galerkin Method is needed. Once trained ($\sim 10^3$ GPUhr), the PINN well reproduces the strong non-linear nature of the solutions (errors $\lesssim 10\%$) and can give speed-ups up to a factor of $\sim 200$ with respect to traditional ODE solvers. Further, the latter have completion times that vary by about $\sim 30\%$ for different initial $n$ and $T$, while the PINN method gives negligible variations. Both the speed-up and the potential improvement in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in astrophysical and cosmological problems.
translated by 谷歌翻译
我们引入了基于仿真的摊销贝叶斯推理方案,以推断随机步行的参数。我们的方法通过无可能的方法了解了步行参数的后验分布。在第一步中,对图形神经网络进行了模拟数据培训,以学习随机步行的优化低维摘要统计数据。在第二步中,可逆神经网络使用变分推断从学习的汇总统计数据中产生参数的后验分布。我们应用我们的方法来从单轨迹推断布朗尼运动模型的参数。摊销推理过程的计算复杂性与轨迹长度线性缩放,其精度比例与cram {\'e} r-rao相似,在较大的长度上结合。该方法对位置噪声是强大的,并且比训练期间看到的轨迹更长的轨迹更长。最后,我们适应了该方案,以表明环境中的有限去相关时间可以从单个轨迹中推断出来。
translated by 谷歌翻译
逆问题本质上是普遍存在的,几乎在科学和工程的几乎所有领域都出现,从地球物理学和气候科学到天体物理学和生物力学。解决反问题的核心挑战之一是解决他们的不良天性。贝叶斯推论提供了一种原则性的方法来克服这一方法,通过将逆问题提出为统计框架。但是,当推断具有大幅度的离散表示的字段(所谓的“维度的诅咒”)和/或仅以先前获取的解决方案的形式可用时。在这项工作中,我们提出了一种新的方法,可以使用深层生成模型进行有效,准确的贝叶斯反转。具体而言,我们证明了如何使用生成对抗网络(GAN)在贝叶斯更新中学到的近似分布,并在GAN的低维度潜在空间中重新解决所得的推断问题,从而有效地解决了大规模的解决方案。贝叶斯逆问题。我们的统计框架保留了潜在的物理学,并且被证明可以通过可靠的不确定性估计得出准确的结果,即使没有有关基础噪声模型的信息,这对于许多现有方法来说都是一个重大挑战。我们证明了提出方法对各种反问题的有效性,包括合成和实验观察到的数据。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
在本文中,我们对数值模拟的加速感兴趣。我们专注于高超音速行星再入问题,该问题涉及耦合流体动力学和化学反应。模拟化学反应需要大部分计算时间,但另一方面,无法避免获得准确的预测。我们面临成本效率和准确性之间的权衡:模拟代码必须足够有效地在操作环境中使用,但必须足够准确,以忠实地预测现象。为了解决这个权衡,我们设计了一个混合模拟代码,将传统的流体动态求解器与近似化学反应的神经网络耦合。当在大数据上下文中应用以及它们源于其矩阵矢量结构的效率时,我们依靠它们的力量来实现重要的加速因子($ \ tims 10 $至$ \ times 18.6 $)。本文旨在解释我们如何在实践中设计这种具有成本效益的混合模拟代码。最重要的是,我们描述了确保准确性保证的方法论,使我们能够超越传统的替代建模,并将这些代码用作参考。
translated by 谷歌翻译
基于原子量表的材料建模在新材料的发展及其特性的理解中起着重要作用。粒子模拟的准确性由原子间电位确定,该电位允许计算原子系统的势能作为原子坐标和潜在的其他特性的函数。基于原理的临界电位可以达到任意水平的准确性,但是它们的合理性受其高计算成本的限制。机器学习(ML)最近已成为一种有效的方法,可以通过用经过电子结构数据培训的高效替代物代替昂贵的模型来抵消Ab始于原子电位的高计算成本。在当前大量方法中,符号回归(SR)正在成为一种强大的“白盒”方法,以发现原子质潜力的功能形式。这项贡献讨论了符号回归在材料科学(MS)中的作用,并对当前的方法论挑战和最新结果提供了全面的概述。提出了一种基于遗传编程的方法来建模原子能(由原子位置和相关势能的快照组成),并在从头算电子结构数据上进行了经验验证。
translated by 谷歌翻译
能源部门的深度脱碳将需要大量的随机可再生能源渗透和大量的网格资产协调。对于面对这种变化而负责维持电网稳定性和安全性的电力系统运营商来说,这是一个具有挑战性的范式。凭借从复杂数据集中学习并提供有关快速时间尺度的预测解决方案的能力,机器学习(ML)得到了很好的选择,可以帮助克服这些挑战,因为在未来几十年中,电力系统转变。在这项工作中,我们概述了与构建可信赖的ML模型相关的五个关键挑战(数据集生成,数据预处理,模型培训,模型评估和模型嵌入),这些模型从基于物理的仿真数据中学习。然后,我们演示如何将单个模块连接在一起,每个模块都克服了各自的挑战,在机器学习管道中的顺序阶段,如何有助于提高训练过程的整体性能。特别是,我们实施了通过反馈连接学习管道的不同元素的方法,从而在模型培训,绩效评估和重新训练之间“关闭循环”。我们通过学习与拟议的北海风能中心系统的详细模型相关的N-1小信号稳定性边缘来证明该框架,其组成模块的有效性及其反馈连接。
translated by 谷歌翻译