在本文中,我们在域移位的情况下,使用OCT B扫描提供了一种基于青光眼分级的自培训框架。特别是,所提出的两步学习方法是在第一步中生成的伪标签来增加目标域上的训练数据集,然后用于训练最终目标模型。这允许从未标记的数据传输知识域。此外,我们提出了一种新的青光眼特异性骨干,通过跳过连接引入残留和注意模块,以优化潜在空间的嵌入功能。通过这样做,我们的模型能够从定量和解释性角度来改善最先进的。据报道的结果表明,通过使用来自源示例的标签,所提出的学习策略可以提高目标数据集的模型的性能,而不会产生额外的注释步骤。我们的模型在不同指标上一直以1-3%的基线优于3-3%,并且在标记的目标数据上培训模型的差距桥接。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
为医学图像评估构建准确和强大的人工智能系统,不仅需要高级深度学习模型的研究和设计,还需要创建大型和策划的注释训练示例。然而,构造这种数据集通常非常昂贵 - 由于注释任务的复杂性和解释医学图像所需的高度专业知识(例如,专家放射科医师)。为了对此限制来说,我们提出了一种基于对比学习和在线特征聚类的丰富图像特征自我监督学习方法。为此目的,我们利用各种方式的大超过100,000,000个医学图像的大型训练数据集,包括放射线照相,计算机断层扫描(CT),磁共振(MR)成像和超声检查。我们建议使用这些功能来指导在各种下游任务的监督和混合自我监督/监督制度的模型培训。我们突出了这种策略对射线照相,CT和MR:1的挑战性图像评估问题的许多优点,与最先进的(例如,检测3-7%的AUC升压为3-7%胸部射线照相扫描的异常和脑CT的出血检测); 2)与使用无预先训练(例如,83%,在培训MR扫描MR扫描中的脑转移的模型时,在训练期间训练期间的模型收敛在训练期间的培训期高达85%。 3)对各种图像增强的鲁棒性增加,例如在场中看到的数据变化的强度变化,旋转或缩放反射。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
脾脏是钝性腹腔创伤中最常见的固体器官之一。来自多相CT的自动分割系统的开发用于脾血管损伤的脾血管损伤,可以增强严重程度,以改善临床决策支持和结果预测。然而,由于以下原因,脾血管损伤的准确细分是具有挑战性的:1)脾血管损伤可以是高度变体的形状,质地,尺寸和整体外观; 2)数据采集是一种复杂和昂贵的程序,需要来自数据科学家和放射科学家的密集努力,这使得大规模的注释数据集难以获取。鉴于这些挑战,我们在此设计了一种用于多相脾血管损伤分割的新框架,尤其是数据有限。一方面,我们建议利用外部数据作为矿井伪脾面罩作为空间关注,被称为外部关注,用于引导脾血管损伤的分割。另一方面,我们开发一个合成相位增强模块,它在生成的对抗网络上构建,通过完全利用不同阶段之间的关系来填充内部数据。通过联合实施外部注意力和填充内部数据表示,我们提出的方法优于其他竞争方法,并且在平均DSC方面大大改善了超过7%的流行Deeplab-V3 +基线,这证实了其有效性。
translated by 谷歌翻译
Systems for person re-identification (ReID) can achieve a high accuracy when trained on large fully-labeled image datasets. However, the domain shift typically associated with diverse operational capture conditions (e.g., camera viewpoints and lighting) may translate to a significant decline in performance. This paper focuses on unsupervised domain adaptation (UDA) for video-based ReID - a relevant scenario that is less explored in the literature. In this scenario, the ReID model must adapt to a complex target domain defined by a network of diverse video cameras based on tracklet information. State-of-art methods cluster unlabeled target data, yet domain shifts across target cameras (sub-domains) can lead to poor initialization of clustering methods that propagates noise across epochs, thus preventing the ReID model to accurately associate samples of same identity. In this paper, an UDA method is introduced for video person ReID that leverages knowledge on video tracklets, and on the distribution of frames captured over target cameras to improve the performance of CNN backbones trained using pseudo-labels. Our method relies on an adversarial approach, where a camera-discriminator network is introduced to extract discriminant camera-independent representations, facilitating the subsequent clustering. In addition, a weighted contrastive loss is proposed to leverage the confidence of clusters, and mitigate the risk of incorrect identity associations. Experimental results obtained on three challenging video-based person ReID datasets - PRID2011, iLIDS-VID, and MARS - indicate that our proposed method can outperform related state-of-the-art methods. Our code is available at: \url{https://github.com/dmekhazni/CAWCL-ReID}
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
背景:宫颈癌严重影响了女性生殖系统的健康。光学相干断层扫描(OCT)作为宫颈疾病检测的非侵入性,高分辨率成像技术。然而,OCT图像注释是知识密集型和耗时的,这阻碍了基于深度学习的分类模型的培训过程。目的:本研究旨在基于自我监督学习,开发一种计算机辅助诊断(CADX)方法来对体内宫颈OCT图像进行分类。方法:除了由卷积神经网络(CNN)提取的高电平语义特征外,建议的CADX方法利用了通过对比纹理学习来利用未标记的宫颈OCT图像的纹理特征。我们在中国733名患者的多中心临床研究中对OCT图像数据集进行了十倍的交叉验证。结果:在用于检测高风险疾病的二元分类任务中,包括高级鳞状上皮病变和宫颈癌,我们的方法实现了0.9798加号或减去0.0157的面积曲线值,灵敏度为91.17加或对于OCT图像贴片,减去4.99%,特异性为93.96加仑或减去4.72%;此外,它在测试集上的四位医学专家中表现出两种。此外,我们的方法在使用交叉形阈值投票策略的118名中国患者中达到了91.53%的敏感性和97.37%的特异性。结论:所提出的基于对比 - 学习的CADX方法表现优于端到端的CNN模型,并基于纹理特征提供更好的可解释性,其在“见和治疗”的临床协议中具有很大的潜力。
translated by 谷歌翻译
我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以进行情感识别。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后标签猜测大量原始和增强的未标记数据。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行这些实验。该实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近种子V和Amigos中的总体最佳结果(达到第二好) (唤醒)。分析表明,我们的成对表示对齐方式通过减少未标记数据和标记数据之间的分布比对来大大提高性能,尤其是当每类仅1个样本被标记时。
translated by 谷歌翻译
这项研究的目的是开发一个强大的基于深度学习的框架,以区分Covid-19,社区获得的肺炎(CAP)和基于使用各种方案和放射剂量在不同成像中心获得的胸部CT扫描的正常病例和正常情况。我们表明,虽然我们的建议模型是在使用特定扫描协议仅从一个成像中心获取的相对较小的数据集上训练的,但该模型在使用不同技术参数的多个扫描仪获得的异质测试集上表现良好。我们还表明,可以通过无监督的方法来更新模型,以应对火车和测试集之间的数据移动,并在从其他中心接收新的外部数据集时增强模型的鲁棒性。我们采用了合奏体系结构来汇总该模型的多个版本的预测。为了初始培训和开发目的,使用了171 Covid-19、60 CAP和76个正常情况的内部数据集,其中包含使用恒定的标准辐射剂量扫描方案从一个成像中心获得的体积CT扫描。为了评估模型,我们回顾了四个不同的测试集,以研究数据特征对模型性能的转移的影响。在测试用例中,有与火车组相似的CT扫描,以及嘈杂的低剂量和超低剂量CT扫描。此外,从患有心血管疾病或手术病史的患者中获得了一些测试CT扫描。这项研究中使用的整个测试数据集包含51 covid-19、28 CAP和51例正常情况。实验结果表明,我们提出的框架在所有测试集上的表现良好,达到96.15%的总准确度(95%CI:[91.25-98.74]),COVID-119,COVID-96.08%(95%CI:[86.54-99.5],95%),[86.54-99.5],),,),敏感性。帽敏感性为92.86%(95%CI:[76.50-99.19])。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
睡眠分期在诊断和治疗睡眠障碍中非常重要。最近,已经提出了许多数据驱动的深度学习模型,用于自动睡眠分期。他们主要在一个大型公共标签的睡眠数据集上训练该模型,并在较小的主题上对其进行测试。但是,他们通常认为火车和测试数据是从相同的分布中绘制的,这可能在现实世界中不存在。最近已经开发了无监督的域适应性(UDA)来处理此域移位问题。但是,以前用于睡眠分期的UDA方法具有两个主要局限性。首先,他们依靠一个完全共享的模型来对齐,该模型可能会在功能提取过程中丢失特定于域的信息。其次,它们仅在全球范围内将源和目标分布对齐,而无需考虑目标域中的类信息,从而阻碍了测试时模型的分类性能。在这项工作中,我们提出了一个名为Adast的新型对抗性学习框架,以解决未标记的目标域中的域转移问题。首先,我们开发了一个未共享的注意机制,以保留两个领域中的域特异性特征。其次,我们设计了一种迭代自我训练策略,以通过目标域伪标签提高目标域上的分类性能。我们还建议双重分类器,以提高伪标签的鲁棒性和质量。在六个跨域场景上的实验结果验证了我们提出的框架的功效及其优于最先进的UDA方法。源代码可在https://github.com/emadeldeen24/adast上获得。
translated by 谷歌翻译
我们提出了一种无监督的域适应(UDA)方法,用于白质超强度(WMH)分割,其使用具有不确定性依赖标签改进的自我训练(果馅乳头)。最近被引入自我培训作为UDA的高效方法,这是基于自我产生的伪标签。但是,伪标签可能非常嘈杂,因此模型性能恶化。我们建议预测伪标签的不确定性,并将其整合在培训过程中,以不确定性导向的损失功能来突出以高确定性突出标签。通过在伪标签生成中结合现有方法的分割输出,进一步改善了馅馅乳头片,其显示为WMH分割的高稳健性。在我们的实验中,我们评估具有标准U-Net和具有更高接受领域的修改网络的批发力。我们的结果在数据集中的WMH分割展示了标准自我训练方面的恒星的显着改善。
translated by 谷歌翻译
眼睛的临床诊断是对多种数据模式进行的,包括标量临床标签,矢量化生物标志物,二维底面图像和三维光学相干性层析成像(OCT)扫描。临床从业者使用所有可用的数据模式来诊断和治疗糖尿病性视网膜病(DR)或糖尿病黄斑水肿(DME)等眼部疾病。在眼科医学领域启用机器学习算法的使用需要研究治疗期内所有相关数据之间的关系和相互作用。现有的数据集受到限制,因为它们既不提供数据,也没有考虑数据模式之间的显式关系建模。在本文中,我们介绍了用于研究以上限制的视觉眼睛语义(橄榄)数据集的眼科标签。这是第一个OCT和近IIR眼底数据集,其中包括临床标签,生物标记标签,疾病标签和时间序列的患者治疗信息,来自相关临床试验。该数据集由1268个近红外图像组成,每个图像至少具有49个10月扫描和16个生物标志物,以及4个临床标签和DR或DME的疾病诊断。总共有96张眼睛的数据在至少两年的时间内平均,每只眼睛平均治疗66周和7次注射。我们在医学图像分析中为橄榄数据集进行了橄榄数据集的实用性,并为核心和新兴机器学习范式提供了基准和具体研究方向。
translated by 谷歌翻译
本文为半监督医学图像分割提供了一个简单而有效的两阶段框架。我们的主要洞察力是探索用标记和未标记的(即伪标记)图像的特征表示学习,以增强分段性能。在第一阶段,我们介绍了一种炼层的不确定感知方法,即Aua,以改善产生高质量伪标签的分割性能。考虑到医学图像的固有歧义,Aua自适应地规范了具有低歧义的图像的一致性。为了提高代表学习,我们提出了一种舞台适应性的对比学习方法,包括边界意识的对比损失,以规范第一阶段中标记的图像,并在第二阶段中的原型感知对比损失优化标记和伪标记的图像阶段。边界意识的对比损失仅优化分段边界周围的像素,以降低计算成本。原型感知对比损失通过为每个类构建质心来充分利用标记的图像和伪标记的图像,以减少对比较的计算成本。我们的方法在两个公共医学图像分割基准上实现了最佳结果。值得注意的是,我们的方法在结肠肿瘤分割的骰子上以5.7%的骰子依赖于只有5%标记的图像而表现出5.7%。
translated by 谷歌翻译
在干扰中爆发之前的火山骚乱早期迹象的检测,干涉性合成孔径雷达(Insar)数据中的地面变形形式对评估火山危害至关重要。在这项工作中,我们将其视为INSAR图像的二进制分类问题,提出了一种新的深度学习方法,该方法利用综合产生的干扰图的丰富来源,以培训在真正干扰图中同样好的质量分类器。问题的不平衡性质,较少的正样品的秩序,与缺乏具有标有标记的insar数据的策划数据库,为传统的深度学习架构设置了一个具有挑战性的任务。我们提出了一个新的域适应框架,其中我们从使用视觉变压器中学习来自合成数据的类原型。我们报告了检测精度,超越了对火山骚扰检测的最新技术。此外,我们通过学习学习的表示和原型空间之间的新的非线性投影来建立了这些知识,使用我们的模型从未标记的真实insar数据集产生的伪标签。这导致新技术在我们的测试集上以97.1%的价格为97.1%。我们通过在未标记的Real Insar DataSet上培训简单的Reset-18卷积神经网络,展示了我们的方法的稳健性,其中来自我们顶部变换器 - 原型模型生成的伪标签。我们的方法在没有手动标记任何样本的情况下,在不需要手动标记任何样本的情况下,提供了显着的改进,以便在各种遥感应用中进一步开发合成符号数据的道路。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译