鉴于数据中心和计算系统的能源需求快速上升,一般来说,在设计时(调度)算法时的能量注意事项是基本的。通过基于例如历史数据预测系统的未来负载,机器学习可以是一种有用的方法。然而,这种方法的有效性高度取决于预测的质量,并且当预测是子标准时,可以远离最佳状态。另一方面,在提供最坏情况的情况下,经典的在线算法对于在实践中产生的大类输入可能是悲观的。本文,本文以新领域的机器学习增强算法的精神,试图获得古典,截止日期,在线速度缩放问题的最佳世界两全其美:基于引入新颖的预测设置,我们开发算法(i)在存在足够的预测存在下,(ii)在存在的情况下获得可释放的低能量消耗,并且(ii)对预测不足,(III)是光滑的,即它们的性能随着预测误差的增加而逐渐降低。
translated by 谷歌翻译
Algorithms with predictions is a recent framework that has been used to overcome pessimistic worst-case bounds in incomplete information settings. In the context of scheduling, very recent work has leveraged machine-learned predictions to design algorithms that achieve improved approximation ratios in settings where the processing times of the jobs are initially unknown. In this paper, we study the speed-robust scheduling problem where the speeds of the machines, instead of the processing times of the jobs, are unknown and augment this problem with predictions. Our main result is an algorithm that achieves a $\min\{\eta^2(1+\alpha), (2 + 2/\alpha)\}$ approximation, for any $\alpha \in (0,1)$, where $\eta \geq 1$ is the prediction error. When the predictions are accurate, this approximation outperforms the best known approximation for speed-robust scheduling without predictions of $2-1/m$, where $m$ is the number of machines, while simultaneously maintaining a worst-case approximation of $2 + 2/\alpha$ even when the predictions are arbitrarily wrong. In addition, we obtain improved approximations for three special cases: equal job sizes, infinitesimal job sizes, and binary machine speeds. We also complement our algorithmic results with lower bounds. Finally, we empirically evaluate our algorithm against existing algorithms for speed-robust scheduling.
translated by 谷歌翻译
There is significant interest in deploying machine learning algorithms for diagnostic radiology, as modern learning techniques have made it possible to detect abnormalities in medical images within minutes. While machine-assisted diagnoses cannot yet reliably replace human reviews of images by a radiologist, they could inform prioritization rules for determining the order by which to review patient cases so that patients with time-sensitive conditions could benefit from early intervention. We study this scenario by formulating it as a learning-augmented online scheduling problem. We are given information about each arriving patient's urgency level in advance, but these predictions are inevitably error-prone. In this formulation, we face the challenges of decision making under imperfect information, and of responding dynamically to prediction error as we observe better data in real-time. We propose a simple online policy and show that this policy is in fact the best possible in certain stylized settings. We also demonstrate that our policy achieves the two desiderata of online algorithms with predictions: consistency (performance improvement with prediction accuracy) and robustness (protection against the worst case). We complement our theoretical findings with empirical evaluations of the policy under settings that more accurately reflect clinical scenarios in the real world.
translated by 谷歌翻译
The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the best predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is the best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
translated by 谷歌翻译
我们在学习增强的设置中研究基本的在线K-Server问题。虽然在传统的在线模型中,算法没有关于请求序列的信息,我们假设在算法的决定上给出了一些建议(例如机器学习预测)。但是,没有保证预测的质量,可能远非正确。我们的主要结果是线路上的K-Server众所周知的双覆盖算法的学习变化(Chrobak等,Sidma 1991),我们将预测整合在一起,以及我们对其质量的信任。我们给出了错误依赖性的竞争比率,这是用户定义的置信度参数的函数,并且在最佳一致性之间平滑地插值,在所有预测是正确的情况下的性能,以及无论预测如何,都是最佳的鲁棒性质量。当给定良好的预测时,我们在没有建议的情况下改善在线算法的下限。我们进一步表明,我们的算法在一类关于局部和记忆属性的确定性算法中实现了任何K几乎最佳的一致性 - 鲁棒性权衡。我们的算法优于先前提出的(更通用的)学习增强算法。上一算法非常重要,这是至关重要的存储器,而我们的算法无记忆。最后,我们展示了实验性的实用性和算法在真实数据上的卓越性能。
translated by 谷歌翻译
我们启动对在线路由问题进行预测的研究,这是受到学习效果算法领域的最新成果的启发。一个学习的在线算法,如果预测是准确的,同时否则可以维持理论保证,即使预测非常错误,则以黑盒方式纳入了预测,以胜过现有的算法。在这项研究中,我们特别开始研究经典的在线旅行推销员问题(OLTSP),其中未来的请求得到了预测。与以前其他研究中的预测模型不同,OLTSP中的每个实际请求与其到达时间和位置相关,可能与预测的每个实际请求不一致,这些预测会导致麻烦的情况。我们的主要结果是研究不同的预测模型和设计算法,以改善不同环境中最著名的结果。此外,我们将提出的结果概括为在线拨号问题。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译
本文研究在线算法增强了多个机器学习预测。尽管近年来已经广泛研究了随着单个预测的增强在线算法,但多个预测设置的文献很少。在本文中,我们提供了一个通用算法框架,用于在线涵盖多个预测的问题,该框架获得了在线解决方案,该解决方案具有与最佳预测指标的性能相对的竞争力。我们的算法将预测的使用纳入了在线算法的经典分析中。我们应用算法框架来解决经典问题,例如在线封面,(加权)缓存和在线设施位置,以在多个预测设置中。我们的算法也可以鲁棒化,即,可以根据最佳的预测和最佳在线算法的性能(无预测)同时使算法具有竞争力。
translated by 谷歌翻译
我们研究了一个单服务器调度问题,目的是最大程度地降低工作所产生的预期累积持有成本,在该计划中,调度程序未知定义随机工作成本的参数。我们考虑一个允许不同工作类别的一般设置,同一班级的工作在统计上相同的持有成本和服务时间,并且跨课程任意数量的工作数量。在每个时间步骤中,服务器都可以处理作业并观察尚未完成的工作的随机保留成本。我们考虑了一个基于学习的$ C \ MU $规则计划,该计划从固定持续时间的先发制期开始,作为学习阶段,并收集了有关工作的数据,它将切换到非抢占计划。我们的算法旨在处理平均职位持有成本的大小差距的实例,并实现近乎最佳的性能保证。遗憾评估了算法的性能,其中基准是当已知工作参数时,$ c \ mu $规则计划策略可能达到的最低持有成本。我们表现​​出遗憾的下限和算法,这些算法几乎获得了遗憾的上限。我们的数值结果证明了我们的算法的功效,并表明我们的遗憾分析几乎很紧张。
translated by 谷歌翻译
最近的经验工作表明,即使所有广告商以非歧视性方式出价,在线广告也可以在用户交付广告时展示偏见。我们研究了广告拍卖的设计,鉴于公平的出价,保证有关展览会产生公平的结果。遵循DWORK和ILVENTO(2019)和CHAWLA等人的作品。 (2020年),我们的目标是设计一种真实的拍卖,这些拍卖会满足其结果的“个人公平”:非正式地说,相似彼此的用户应该获得类似的广告分配。在本框架内,我们量化了社会福利最大化和公平性之间的权衡。这项工作提出了两个概念贡献。首先,我们将公平约束表达为一种稳定条件:所有广告商的任何两个用户都分配了乘法相似的值,必须为每个广告商接受类似的相似分配。该值稳定性约束表示为函数,该函数将值向量之间的乘法距离映射到相应分配之间的最大允许$ \ {\ infty} $距离。标准拍卖不满足这种价值稳定性。其次,我们介绍了一个新的一类分配算法,称为反比例分配,实现公平和社会福利之间的近似最佳权衡,以实现广泛和表现力的价值稳定条件。这些分配算法是真实的,并且先前的,并且实现了最佳(无约会)社会福利的恒定因素近似。特别地,近似比与系统中的广告商的数量无关。在这方面,这些分配算法极大地超越了以前的工作中实现的保证。我们还将结果扩展到更广泛的公平概念,以至于我们称之为公平性。
translated by 谷歌翻译
我们考虑使用Black-Box建议进行凸功能追逐的问题,在线决策者旨在最大程度地降低规范矢量空间中决策之间的总成本和切换的总成本,并得到黑盒建议的帮助,例如机器学习算法。决策者在表现良好的情况下(称为$ \ textit {constancy} $时,都可以寻求与建议相当的成本,同时也确保最差的$ \ textit {robustness} $即使建议是对抗性的。我们首先考虑算法的常见范式,这些算法在建议的决策和竞争算法之间切换,这表明该课程中没有算法可以改善3次持续性,同时保持强大。然后,我们提出了两种新颖的算法,这些算法通过利用问题的凸度来绕过这一限制。第一个,Interp,Achie $(\ sqrt {2}+\ epsilon)$ - 一致性和$ \ Mathcal {o}(\ frac {c} {c} {\ epsilon^2})$ - 任何$ \ epsilon> 0> 0 $,其中$ c $是用于凸起功能或其子类的算法的竞争比率。第二个,bdinterp,达到$(1+ \ epsilon)$ - 一致性和$ \ Mathcal {o}(\ frac {cd} {\ epsilon})$ - 当问题界限直径$ d $时,稳健性。此外,我们表明,对于成本功能为$ \ alpha $ polyhedral的特殊情况,BDINTP实现了几乎最佳的一致性 - 持久性权衡。
translated by 谷歌翻译
我们研究随机的在线资源分配:决策者需要分配有限的资源来为随机生成的顺序派遣请求,以最大程度地提高奖励。通过练习,我们考虑了一个数据驱动的设置,在该设置中,请求独立于决策者未知的分布。过去已经对在线资源分配及其特殊情况进行了广泛的研究,但是这些先前的结果至关重要和普遍地依赖于一个实际上不可能的假设:请求总数(地平线)是决策者事先知道的。在许多应用程序(例如收入管理和在线广告)中,由于需求或用户流量强度的波动,请求的数量可能差异很大。在这项工作中,我们开发了在线算法,这些算法对地平线不确定性是可靠的。与已知的马环境形成鲜明对比的是,我们表明没有算法可以达到与视野不确定性无关的恒定渐近竞争比率。然后,我们引入了一种新型算法,该算法将双镜下降与精心选择的目标消耗序列结合在一起,并证明其达到了有限的竞争比率。从地平线不确定性增长时,我们的竞争比达到了最佳生长速率,我们的算法几乎是最佳的。
translated by 谷歌翻译
本文考虑了最近流行的超越最坏情况算法分析模型,其与在线算法设计集成了机器学习预测。我们在此模型中考虑在线Steiner树问题,用于指向和无向图。据了解施泰纳树在线设置中具有强大的下限,并且任何算法的最坏情况都远非可取。本文考虑了预测哪个终端在线到达的算法。预测可能是不正确的,并且算法的性能由错误预测的终端的数量进行参数化。这些保证确保算法通过具有良好预测的在线下限,并且随着预测误差的增长,竞争比率优雅地降低。然后,我们观察到该理论是预测将经验发生的事情。我们在终端从分发中绘制的图表中显示了终端,即使具有适度正确的预测,新的在线算法也具有很强的性能。
translated by 谷歌翻译
在本文中,我们研究了一个多级多服务器排队系统,其具有代表作业和服务器的特征向量的Bilinear模型之后的作业服务器分配随机奖励。我们的目标是对oracle策略的遗憾最小化,该策略具有完整的系统参数信息。我们提出了一种调度算法,该算法使用线性强盗算法以及动态作业分配给服务器。对于基线设置,其中均值工作时间与所有作业相同,我们表明我们的算法具有子线性遗憾,以及在地平线时间内的平均队列长度上的子线性绑定。我们进一步示出了类似的界限在更一般的假设下保持,允许不同的作业类别的非相同均值工作时间和一组时变的服务器类。我们还表明,可以通过访问作业类的交通强度的算法来保证更好的遗憾和均值队列长度界限。我们呈现数值实验的结果,示出了我们算法的遗憾和平均队列长度依赖于各种系统参数,并将它们的性能与先前提出的算法进行比较,使用合成随机生成的数据和真实世界集群计算数据跟踪。
translated by 谷歌翻译
探索未知环境是许多域中的基本任务,例如机器人导航,网络安全和互联网搜索。我们通过添加对机器学习的预测的访问来启动古典卓越的在线图探索问题的学习增强变体。我们提出了一种自然地将预测集成到众所周知的最近邻居(NN)算法中的算法,并且如果预测具有高精度,则在预测时保持良好的保证的情况下显着优于任何已知的在线算法。我们提供了理论上的最坏情况界,以预测误差优雅地降低,我们通过确认我们的结果的计算实验来补充它们。此外,我们将我们的概念扩展到稳定算法的一般框架。通过在给定的算法和NN之间仔细插值,我们证明了新的性能界限,这些界限在特定输入上利用各个良好的性能,同时建立了任意输入的鲁棒性。
translated by 谷歌翻译
在本文中,我们开发了一种新的虚拟队列在线在线凸优化(OCO)问题,具有长期和时变的约束,并对动态遗憾和约束违规进行性能分析。我们设计了一种新的Dual变量的新更新规则以及将时间变化约束函数的新方法集成到双变量中。据我们所知,我们的算法是第一个免费算法,可以同时实现Sublinear动态遗憾和约束违规。我们所提出的算法还优于最先进的结果,例如,在许多方面,例如,我们的算法不需要替换条件。同时,对于一组实际和广泛研究的约束oco问题,其中连续约束的变化在跨时时间流畅,我们的算法实现了$ O(1)$约束违规。此外,我们将算法和分析扩展到案例时,当时地平线$ T $未知。最后,进行了数值实验以验证我们算法的理论保证,并概述了我们提出的框架的一些应用。
translated by 谷歌翻译
In this paper we deal with a complex real world scheduling problem closely related to the well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem concerns industrial test laboratories in which a large number of tests has to be performed by qualified personnel using specialised equipment, while respecting deadlines and other constraints. We present different constraint programming models and search strategies for this problem. Furthermore, we propose a Very Large Neighborhood Search approach based on our CP methods. Our models are evaluated using CP solvers and a MIP solver both on real-world test laboratory data and on a set of generated instances of different sizes based on the real-world data. Further, we compare the exact approaches with VLNS and a Simulated Annealing heuristic. We could find feasible solutions for all instances and several optimal solutions and we show that using VLNS we can improve upon the results of the other approaches.
translated by 谷歌翻译
我们研究了Massart噪声存在下PAC学习半空间的复杂性。在这个问题中,我们得到了I.I.D.标记的示例$(\ mathbf {x},y)\ in \ mathbb {r}^n \ times \ {\ pm 1 \} $,其中$ \ mathbf {x} $的分布是任意的,标签$ y y y y y y。 $是$ f(\ mathbf {x})$的MassArt损坏,对于未知的半空间$ f:\ mathbb {r}^n \ to \ to \ {\ pm 1 \} $,带有翻转概率$ \ eta(\ eta)(\ eta) Mathbf {x})\ leq \ eta <1/2 $。学习者的目的是计算一个小于0-1误差的假设。我们的主要结果是该学习问题的第一个计算硬度结果。具体而言,假设学习错误(LWE)问题(LWE)问题的(被认为是广泛的)超指定时间硬度,我们表明,即使最佳,也没有多项式时间MassArt Halfspace学习者可以更好地达到错误的错误,即使是最佳0-1错误很小,即$ \ mathrm {opt} = 2^{ - \ log^{c}(n)} $对于任何通用常数$ c \ in(0,1)$。先前的工作在统计查询模型中提供了定性上类似的硬度证据。我们的计算硬度结果基本上可以解决Massart Halfspaces的多项式PAC可学习性,这表明对该问题的已知有效学习算法几乎是最好的。
translated by 谷歌翻译
SemideFinite编程(SDP)是一个统一的框架,可以概括线性编程和四二次二次编程,同时在理论和实践中也产生有效的求解器。但是,当覆盖SDP的约束以在线方式到达时,存在近似最佳解决方案的已知结果。在本文中,我们研究了在线涵盖线性和半决赛程序,其中通过可能错误的预测指标的建议增强了算法。我们表明,如果预测变量是准确的,我们可以有效地绕过这些不可能的结果,并在最佳解决方案(即一致性)上实现恒定因素近似值。另一方面,如果预测变量不准确,在某些技术条件下,我们取得的结果既匹配经典的最佳上限和紧密的下限,则达到恒定因素,即稳健性。更广泛地,我们引入了一个框架,该框架既扩展了(1)由Bamas,Maggiori和Svensson(Neurips 2020)研究的机器学习预测变量增加的在线套装问题,以及(2)在线覆盖SDP问题,由SDP问题发起。 Elad,Kale和Naor(ICALP 2016)。具体而言,我们获得了一般的在线学习算法,用于涵盖具有分数建议和约束的线性程序,并启动学习启发算法以涵盖SDP问题的研究。我们的技术基于Buchbinder和NAOR的原始二次框架(操作研究的数学,34,2009),并且可以进一步调整以处理变量位于有限区域的约束,即框约束。
translated by 谷歌翻译
我们考虑使用对抗鲁棒性学习的样本复杂性。对于此问题的大多数现有理论结果已经考虑了数据中不同类别在一起或重叠的设置。通过一些实际应用程序,我们认为,相比之下,存在具有完美精度和稳健性的分类器的分类器的良好分离的情况,并表明样品复杂性叙述了一个完全不同的故事。具体地,对于线性分类器,我们显示了大类分离的分布式,其中任何算法的预期鲁棒丢失至少是$ \ω(\ FRAC {D} {n})$,而最大边距算法已预期标准亏损$ o(\ frac {1} {n})$。这表明了通过现有技术不能获得的标准和鲁棒损耗中的间隙。另外,我们介绍了一种算法,给定鲁棒率半径远小于类之间的间隙的实例,给出了预期鲁棒损失的解决方案是$ O(\ FRAC {1} {n})$。这表明,对于非常好的数据,可实现$ O(\ FRAC {1} {n})$的收敛速度,否则就是这样。我们的结果适用于任何$ \ ell_p $ norm以$ p> 1 $(包括$ p = \ idty $)为稳健。
translated by 谷歌翻译