这项研究旨在提出一个基于K-neart邻居的新型分类器,该分类器使用Power Muirhead平均操作员来计算每个类别的本地平均值。我们称我们的新方法电源muirhead Mean K-Nearest邻居(PMM-KNN)分类器。PMM-KNN分类器具有多个参数,可以针对每个问题确定和微调,这些参数与其他最近的邻居方法相比是一个优势。我们使用五个知名数据集评估PMM-KNN性能。研究结果表明,PMM-KNN优于其他一些分类方法。
translated by 谷歌翻译
KNN分类是一种即兴的学习模式,其中仅当预测测试数据设置适当的K值并从整个训练样本空间搜索K最近邻居时,将它们引用到KNN分类的惰性部分。这一懒散的部分是应用KNN分类的瓶颈问题,因为完全搜索了K最近邻居。在本文中,提出了一步计算来取代KNN分类的惰性部分。一步计算实际上将惰性部分转换为矩阵计算,如下所示。考虑到测试数据,首先应用训练样本以将测试数据与最小二乘损耗功能拟合。然后,通过根据它们对测试数据的影响来加权所有训练样本来生成关系矩阵。最后,采用一个组套索来对关系矩阵进行稀疏学习。以这种方式,设置k值和搜索k最近邻居都集成到统一的计算。此外,提出了一种新的分类规则来改善单步核武器分类的性能。提出的方法是通过实验评估的,并证明了一步核武器分类是有效和有前途的
translated by 谷歌翻译
本文提出了一种基于对不平衡数据集的图形的新的RWO采样(随机步行过度采样)。在该方法中,引入了基于采样的下采样和过采样方法的两种方案,以使接近信息保持对噪声和异常值的鲁棒。在构建少数群体类上的第一个图形之后,RWO取样将在选定的样本上实现,其余部分保持不变。第二图是为多数类构造的,除去低密度区域(异常值)中的样品被移除。最后,在所提出的方法中,选择高密度区域中的多数类别的样品,并消除其余部分。此外,利用RWO取样,虽然未提高异常值,但虽然少数群体类的边界增加。测试该方法,并将评估措施的数量与先前的九个连续属性数据集进行比较,具有不同的过采集率和一个数据集,用于诊断Covid-19疾病。实验结果表明了所提出的不平衡数据分类方法的高效率和灵活性
translated by 谷歌翻译
The accuracy of k-nearest neighbor (kNN) classification depends significantly on the metric used to compute distances between different examples. In this paper, we show how to learn a Mahalanobis distance metric for kNN classification from labeled examples. The Mahalanobis metric can equivalently be viewed as a global linear transformation of the input space that precedes kNN classification using Euclidean distances. In our approach, the metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. As in support vector machines (SVMs), the margin criterion leads to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our approach requires no modification or extension for problems in multiway (as opposed to binary) classification. In our framework, the Mahalanobis distance metric is obtained as the solution to a semidefinite program. On several data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification. Sometimes these results can be further improved by clustering the training examples and learning an individual metric within each cluster. We show how to learn and combine these local metrics in a globally integrated manner.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
需要在机器学习模型中对最小参数设置的需求,以避免耗时的优化过程。$ k $ - 最终的邻居是在许多问题中使用的最有效,最直接的模型之一。尽管具有众所周知的性能,但它仍需要特定数据分布的$ K $值,从而需要昂贵的计算工作。本文提出了一个$ k $ - 最终的邻居分类器,该分类器绕过定义$ k $的值的需求。考虑到训练集的数据分布,该模型计算$ k $值。我们将提出的模型与标准$ K $ - 最近的邻居分类器和文献中的两个无参数版本进行了比较。11个公共数据集的实验证实了所提出方法的鲁棒性,因为所获得的结果相似甚至更好。
translated by 谷歌翻译
在这个时代,作为医疗的主要重点,这一时刻已经到来了。尽管令人印象深刻,但已经开发出来检测疾病的多种技术。此时,有一些类型的疾病COVID-19,正常烟,偏头痛,肺病,心脏病,肾脏疾病,糖尿病,胃病,胃病,胃病,骨骼疾病,自闭症是非常常见的疾病。在此分析中,我们根据疾病的症状进行了分析疾病症状的预测。我们研究了一系列症状,并接受了人们的调查以完成任务。已经采用了几种分类算法来训练模型。此外,使用性能评估矩阵来衡量模型的性能。最后,我们发现零件分类器超过了其他分类器。
translated by 谷歌翻译
冠状质量弹出(CME)是最地理化的空间天气现象,与大型地磁风暴有关,有可能引起电信,卫星网络中断,电网损失和故障的干扰。因此,考虑到这些风暴对人类活动的潜在影响,对CME的地理效果的准确预测至关重要。这项工作着重于在接近太阳CME的白光冠状动脉数据集中训练的不同机器学习方法,以估计这种新爆发的弹出是否有可能诱导地磁活动。我们使用逻辑回归,k-nearest邻居,支持向量机,向前的人工神经网络以及整体模型开发了二进制分类模型。目前,我们限制了我们的预测专门使用太阳能发作参数,以确保延长警告时间。我们讨论了这项任务的主要挑战,即我们数据集中的地理填充和无效事件的数量以及它们的众多相似之处以及可用变量数量有限的极端失衡。我们表明,即使在这种情况下,这些模型也可以达到足够的命中率。
translated by 谷歌翻译
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
translated by 谷歌翻译
与脑电图(TMS-EEG)共同注册的经颅磁刺激先前已证明是对阿尔茨海默氏病(AD)研究的有用工具。在这项工作中,我们研究了使用TMS诱发的脑电图反应的使用,以对健康对照(HC)分类AD患者。通过使用包含17AD和17HC的数据集,我们从单个TMS响应中提取各种时域特征,并在低,中和高密度EEG电极集中平均它们。在保留一项受试者的验证方案中,使用带有随机森林分类器的高密度电极获得了AD与HC的最佳分类性能。准确性,灵敏度和特异性分别为92.7%,96.58%和88.2%。
translated by 谷歌翻译
随着软件量表和复杂性的快速增长,将大量错误报告提交到错误跟踪系统中。为了加快缺陷维修的速度,需要对这些报告进行准确的分类,以便可以将其发送给适当的开发人员。但是,现有的分类方法仅使用错误报告的文本信息,从而导致其性能较低。为了解决上述问题,本文提出了一种用于错误报告的新自动分类方法。创新是,当对错误报告进行分类时,除了使用报告的文本信息外,还考虑了报告的意图(即建议或解释),从而提高了分类的性能。首先,我们从四个生态系统(Apache,Eclipse,Gentoo,Mozilla)收集错误报告,并手动注释它们以构建实验数据集。然后,我们使用自然语言处理技术来预处理数据。在此基础上,BERT和TF-IDF用于提取意图的功能和多个文本信息。最后,这些功能用于训练分类器。对五个分类器(包括k-nearest邻居,天真的贝叶斯,逻辑回归,支持向量机和随机森林)的实验结果表明,我们提出的方法可实现更好的性能,其F量度从87.3%达到95.5%。
translated by 谷歌翻译
一个躺在胸腔里的心脏的四个基本腔腔对一个人的生存至关重要,但讽刺地证明是最脆弱的。心血管疾病(CVD)也通常被称为心脏病,在过去几十年中,人类在人类死亡原因中稳步发展。考虑到这一点统计,很明显,患有CVDS的患者需要快速且正确的诊断,以便于早期治疗来减少死亡的机会。本文试图利用提供的数据,以培训分类模型,如逻辑回归,k最近邻居,支持向量机,决策树,高斯天真贝叶斯,随机森林和多层感知(人工神经网络),最终使用柔软投票合奏技术,以便尽可能多地诊断。
translated by 谷歌翻译
不平衡的数据(ID)是阻止机器学习(ML)模型以实现令人满意的结果的问题。 ID是一种情况,即属于一个类别的样本的数量超过另一个类别的情况,这使此类模型学习过程偏向多数类。近年来,为了解决这个问题,已经提出了几种解决方案,该解决方案选择合成为少数族裔类生成新数据,或者减少平衡数据的多数类的数量。因此,在本文中,我们研究了基于深神经网络(DNN)和卷积神经网络(CNN)的方法的有效性,并与各种众所周知的不平衡数据解决方案混合,这意味着过采样和降采样。为了评估我们的方法,我们使用了龙骨,乳腺癌和Z-Alizadeh Sani数据集。为了获得可靠的结果,我们通过随机洗牌的数据分布进行了100次实验。分类结果表明,混合的合成少数族裔过采样技术(SMOTE) - 正态化-CNN优于在24个不平衡数据集上达到99.08%精度的不同方法。因此,提出的混合模型可以应用于其他实际数据集上的不平衡算法分类问题。
translated by 谷歌翻译
不平衡的分类问题成为数据挖掘和机器学习中的重要和具有挑战性问题之一。传统分类器的性能将受到许多数据问题的严重影响,例如类不平衡问题,类重叠和噪声。 Tomek-Link算法仅用于在提出时清理数据。近年来,已经报道了将Tomek-Link算法与采样技术结合起来。 Tomek-Link采样算法可以有效地减少数据上的类重叠,删除难以区分的多数实例,提高算法分类精度。然而,Tomek-Links下面采样算法仅考虑全局彼此的最近邻居并忽略潜在的本地重叠实例。当少数群体实例的数量很小时,取样效果不令人满意,分类模型的性能改善并不明显。因此,在Tomek-Link的基础上,提出了一种多粒度重新标记的取样算法(MGRU)。该算法完全考虑了本地粒度子空间中的数据集的本地信息,并检测数据集中的本地潜在重叠实例。然后,根据全局重新标记的索引值消除重叠的多数实例,这有效地扩展了Tomek-Link的检测范围。仿真结果表明,当我们选择欠采样的最佳全局重新标记索引值时,所提出的下采样算法的分类准确性和泛化性能明显优于其他基线算法。
translated by 谷歌翻译
We investigate the use of Minimax distances to extract in a nonparametric way the features that capture the unknown underlying patterns and structures in the data. We develop a general-purpose and computationally efficient framework to employ Minimax distances with many machine learning methods that perform on numerical data. We study both computing the pairwise Minimax distances for all pairs of objects and as well as computing the Minimax distances of all the objects to/from a fixed (test) object. We first efficiently compute the pairwise Minimax distances between the objects, using the equivalence of Minimax distances over a graph and over a minimum spanning tree constructed on that. Then, we perform an embedding of the pairwise Minimax distances into a new vector space, such that their squared Euclidean distances in the new space equal to the pairwise Minimax distances in the original space. We also study the case of having multiple pairwise Minimax matrices, instead of a single one. Thereby, we propose an embedding via first summing up the centered matrices and then performing an eigenvalue decomposition to obtain the relevant features. In the following, we study computing Minimax distances from a fixed (test) object which can be used for instance in K-nearest neighbor search. Similar to the case of all-pair pairwise Minimax distances, we develop an efficient and general-purpose algorithm that is applicable with any arbitrary base distance measure. Moreover, we investigate in detail the edges selected by the Minimax distances and thereby explore the ability of Minimax distances in detecting outlier objects. Finally, for each setting, we perform several experiments to demonstrate the effectiveness of our framework.
translated by 谷歌翻译
从不平衡数据中学习是一项具有挑战性的任务。在进行不平衡数据训练时,标准分类算法的性能往往差。需要通过修改数据分布或重新设计基础分类算法以实现理想的性能来采用一些特殊的策略。现实世界数据集中不平衡的流行率导致为班级不平衡问题创造了多种策略。但是,并非所有策略在不同的失衡情况下都有用或提供良好的性能。处理不平衡的数据有许多方法,但是尚未进行此类技术的功效或这些技术之间的实验比较。在这项研究中,我们对26种流行抽样技术进行了全面分析,以了解它们在处理不平衡数据方面的有效性。在50个数据集上进行了严格的实验,具有不同程度的不平衡,以彻底研究这些技术的性能。已经提出了对技术的优势和局限性的详细讨论,以及如何克服此类局限性。我们确定了影响采样策略的一些关键因素,并提供有关如何为特定应用选择合适的采样技术的建议。
translated by 谷歌翻译
目的:当学习者未能达到里程碑时,教育工作者经常想知道是否有任何警告信号可以使他们更早进行干预。机器学习可以预测哪些学生有可能失败高风险认证考试的风险。如果可以在考试前做好预测,那么教育工作者可以在学生参加考试之前有意义地干预以减少分数失败的机会。方法:在医师助理研究硕士课程中,使用已收集的一年级学生评估数据,作者使用更改数量的更改数量邻居可以预测每个学生的未来考试成绩,以了解医师助理国家认证考试(PANCE)。验证以两种方式进行:放置交叉验证(LOOCV)并评估新队列中的预测。结果:AMMKNN在LOOCV中获得了93%的精度。 AMMKNN为每个学生提供了预测的PANCE分数,在他们计划参加考试前一年。然后,可以将学生分为额外的支持,可选的额外支持或没有额外的支持小组。然后,教育工作者有一年的时间为每个类别的学生提供适当的定制支持。结论:预测分析可以识别出高风险的学生,因此他们在准备高风险认证考试时可以获得其他支持或补救。教育工作者可以使用随附的方法和代码为学生生成预测的测试结果。作者建议教育工作者负责任地透明地使用这种或类似的预测方法,因为用于支持学生的众多工具之一。
translated by 谷歌翻译
This paper computationally demonstrates a sharp improvement in predictive performance for $k$ nearest neighbors thanks to an efficient forward selection of the predictor variables. We show both simulated and real-world data that this novel repeatedly approaches outperformance regression models under stepwise selection
translated by 谷歌翻译
使用机器学习和深度学习来预测脑电图(EEG)信号的认知任务是脑部计算机界面(BCI)的快速前进的领域。与计算机视觉和自然语言处理的领域相反,这些试验的数据数量仍然很小。开发基于PC的机器学习技术来增加非专家最终用户的参与,可以帮助解决此数据收集问题。我们为机器学习创建了一种新颖的算法,称为时间多数投票(TMV)。在我们的实验中,TMV的性能比尖端算法更好。它可以在个人计算机上有效运行,以进行涉及BCI的分类任务。这些可解释的数据还可以帮助最终用户和研究人员更好地理解脑电图测试。
translated by 谷歌翻译
学习(IL)是数据挖掘应用中广泛存在的重要问题。典型的IL方法利用直观的类努力重新采样或重新重量直接平衡训练集。然而,特定领域的一些最近的研究努力表明,在没有课堂上操纵的情况下可以实现类别不平衡的学习。这提示我们思考两种不同的IL战略之间的关系和班级不平衡的性质。从根本上说,它们对应于IL中存在的两个必要的不平衡:来自不同类别的示例之间的数量差异以及单个类中的易于和硬示例之间,即阶级和级别的帧内不平衡。现有工程未能明确地考虑不平衡,因此遭受次优绩效。鉴于此,我们呈现了双重平衡的集合,即杜博士,一个多功能的集合学习框架。与普遍方法不同,Dube直接执行级别的级别和级别的平衡,而无需依赖基于距离的距离的计算,这允许它在计算效率时实现竞争性能。我们还提出了关于基于杜博伊的不同间/内部平衡策略的优缺点的详细讨论和分析。广泛的实验验证了所提出的方法的有效性。代码和示例可在https://github.com/iCde20222sub/duplebalance获得。
translated by 谷歌翻译