联合学习(FL)使独立方能够在保护数据隐私的同时协作建立机器学习(ML)模型。 FL的变体垂直联合学习(VFL)最近引起了人们的注意,因为VFL与企业对利用更有价值的功能的需求相匹配,以实现更好的模型性能而不会损害数据隐私。但是,传统的VFL可能会陷入数据缺陷,因为它只能用标签来利用标签的对准​​样品(属于不同的各方),而通常将大多数未对齐和未标记的样品均未使用。数据缺乏阻碍了联邦的努力。在这项工作中,我们提出了一个联合的混合自我监督的学习框架,即Fedhssl,以利用参与者的所有可用数据(包括未对准和未标记的样本)来培训联合VFL模型。 FEDHSSL的核心思想是利用各方之间对齐的样本的跨党派观点(即分散特征)和各方的本地观点(即增强)来提高通过SSL(SSL)的表示能力(例如,simsiam)。 FEDHSSL进一步利用各方共享的通用特征,以通过部分模型聚合来提高联合模型的性能。我们从经验上证明,与基线方法相比,我们的FEDHSSL实现了显着的性能增长,尤其是当标记样品数量较小时。我们对FedHSSL提供有关隐私泄漏的深入分析,这在现有的自我监督的VFL作品中很少讨论。我们研究了FEDHSSL的保护机制。结果表明,我们的保护可以阻止最先进的标签推理攻击。
translated by 谷歌翻译
联合学习(FL)已成为解决数据筒仓问题的实用解决方案,而不会损害用户隐私。它的一种变体垂直联合学习(VFL)最近引起了人们的关注,因为VFL与企业对利用更有价值的功能的需求相匹配,以构建更好的机器学习模型,同时保留用户隐私。当前在VFL中的工作集中于为特定VFL算法开发特定的保护或攻击机制。在这项工作中,我们提出了一个评估框架,该框架提出了隐私 - 私人评估问题。然后,我们将此框架作为指南,以全面评估针对三种广泛依据的VFL算法的大多数最先进的隐私攻击的广泛保护机制。这些评估可以帮助FL从业人员在特定要求下选择适当的保护机制。我们的评估结果表明:模型反转和大多数标签推理攻击可能会因现有保护机制而挫败;很难防止模型完成(MC)攻击,这需要更高级的MC靶向保护机制。根据我们的评估结果,我们为提高VFL系统的隐私保护能力提供具体建议。
translated by 谷歌翻译
我们提出了一种小说隐私保留的联邦对冲域适应方法($ \ textbf {prada} $),以解决在学习的下面但实际的跨筒仓联合域适应问题,其中目标域的一方在两个样本中不足和特色。通过通过常规联合学习将特征空间扩展到具有功能丰富的派对来解决缺乏特征问题,并通过从富含样品富裕的源党对目标方进行对抗域适应来解决样本稀缺问题。在这项工作中,我们专注于可解释性至关重要的财务应用。然而,现有的对抗域适配方法通常应用单个特征提取器来学习对于目标任务的低解释是低解释的特征表示。为了提高可解释性,我们利用域专业知识将要素空间拆分为多个组,每个组都保存相关功能,并且我们从每个功能组中学习语义有意义的高阶功能。此外,我们将特征提取器(以及域鉴别器以及域鉴别器一起)应用于每个特征组以启用细粒度的域自适应。我们设计一种安全的协议,以安全有效地执行PRADA。我们在两个表格数据集中评估我们的方法。实验表明了我们方法的有效性和实用性。
translated by 谷歌翻译
在联合学习等协作学习环境中,好奇的疗程可能是诚实的,但正在通过推理攻击试图通过推断攻击推断其他方的私人数据,而恶意缔约方可能会通过后门攻击操纵学习过程。但是,大多数现有的作品只考虑通过样本(HFL)划分数据的联合学习场景。特征分区联合学习(VFL)可以是许多真实应用程序中的另一个重要方案。当攻击者和防守者无法访问其他参与者的功能或模型参数时,这种情况下的攻击和防御尤其挑战。以前的作品仅显示了可以从每个样本渐变重建私有标签。在本文中,我们首先表明,只有批量平均梯度被揭示时,可以重建私人标签,这是针对常见的推定。此外,我们表明VFL中的被动派对甚至可以通过梯度替换攻击将其相应的标签用目标标签替换为目标标签。为了防御第一次攻击,我们介绍了一种基于AutoEncoder和熵正则化的混乱自动化器(CoAE)的新技术。我们证明,与现有方法相比,这种技术可以成功阻止标签推理攻击,同时损害较少的主要任务准确性。我们的COAE技术在捍卫梯度替代后门攻击方面也有效,使其成为一个普遍和实用的防御策略,没有改变原来的VFL协议。我们展示了我们双方和多方VFL设置下的方法的有效性。据我们所知,这是第一次处理特征分区联合学习框架中的标签推理和后门攻击的第一个系统研究。
translated by 谷歌翻译
作为一个新兴的安全学习范式,在利用跨机构私人数据中,垂直联合学习(VFL)有望通过启用广告商和发布者私人拥有的补充用户属性的联合学习来改善广告模型。但是,将其应用于广告系统有两个关键的挑战:a)标记的重叠样本的有限规模,b)实时跨机构服务的高成本。在本文中,我们提出了一个半监督的拆卸框架VFED-SSD,以减轻这两个限制。我们确定:i)广告系统中有大量未标记的重叠数据,ii)我们可以通过分解联合模型来保持模型性能和推理成本之间的平衡。具体而言,我们开发了一个自制任务匹配的配对检测(MPD),以利用垂直分区的未标记数据并提出拆分知识蒸馏(SplitKD)架构,以避免跨机构服务。对三个工业数据集的实证研究表现出我们方法的有效性,在本地部署模式和联合部署模式下,所有数据集的中位数AUC分别提高了0.86%和2.6%。总体而言,我们的框架为实时展示广告提供了一种有效的联邦增强解决方案,其部署成本和大量绩效提升。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
由于对隐私保护的关注不断增加,因此如何在不同数据源上建立机器学习(ML)模型具有安全保证,这越来越受欢迎。垂直联合学习(VFL)描述了这种情况,其中ML模型建立在不同参与方的私人数据上,该数据与同一集合相同的实例中拥有不相交的功能,这适合许多现实世界中的协作任务。但是,我们发现VFL现有的解决方案要么支持有限的输入功能,要么在联合执行过程中遭受潜在数据泄漏的损失。为此,本文旨在研究VFL方案中ML模式的功能和安全性。具体来说,我们介绍了BlindFL,这是VFL训练和推理的新型框架。首先,为了解决VFL模型的功能,我们建议联合源层团结不同各方的数据。联合源层可以有效地支持各种特征,包括密集,稀疏,数值和分类特征。其次,我们在联合执行期间仔细分析了安全性,并正式化了隐私要求。基于分析,我们设计了安全,准确的算法协议,并进一步证明了在理想真实的仿真范式下的安全保证。广泛的实验表明,BlindFL支持各种数据集和模型,同时获得强大的隐私保证。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
在皮肤病学诊断中,移动皮肤病学助理收集的私人数据存在于患者的分布式移动设备上。联合学习(FL)可以使用分散数据来训练模型,同时保持数据本地化。现有的FL方法假设所有数据都有标签。但是,由于高标签成本,医疗数据通常没有完整的标签。自我监督的学习(SSL)方法,对比度学习(CL)和蒙版自动编码器(MAE)可以利用未标记的数据来预先培训模型,然后用有限的标签进行微调。但是,组合SSL和FL有独特的挑战。例如,CL需要不同的数据,但每个设备仅具有有限的数据。对于MAE而言,尽管基于视觉变压器(VIT)的MAE在集中学习中具有更高的准确性,但尚未研究MAE在未标记数据的FL中的性能。此外,服务器和客户端之间的VIT同步与传统CNN不同。因此,需要设计特殊的同步方法。在这项工作中,我们提出了两个联邦自制的学习框架,用于具有有限标签的皮肤病学诊断。第一个具有较低的计算成本,适用于移动设备。第二个具有高精度,适合高性能服务器。根据CL,我们提出了与功能共享(FedClf)的联合对比度学习。共享功能可用于不同的对比信息,而无需共享原始数据以获得隐私。根据MAE,我们提出了Fedmae。知识拆分将所学的全球知识与每个客户分开。只有全球知识才能汇总为更高的概括性能。关于皮肤病学数据集的实验表明,所提出的框架的精度优于最先进的框架。
translated by 谷歌翻译
空中接入网络已被识别为各种事物互联网(物联网)服务和应用程序的重要驾驶员。特别是,以无人机互联网为中心的空中计算网络基础设施已经掀起了自动图像识别的新革命。这种新兴技术依赖于共享地面真理标记的无人机(UAV)群之间的数据,以培训高质量的自动图像识别模型。但是,这种方法将带来数据隐私和数据可用性挑战。为了解决这些问题,我们首先向一个半监督的联邦学习(SSFL)框架提供隐私保留的UAV图像识别。具体而言,我们提出了模型参数混合策略,以改善两个现实场景下的FL和半监督学习方法的天真组合(标签 - 客户端和标签 - 服务器),其被称为联合混合(FEDMIX)。此外,在不同环境中使用不同的相机模块,在不同环境中使用不同的相机模块,在不同的相机模块,即统计异质性,存在显着差异。为了减轻统计异质性问题,我们提出了基于客户参与训练的频率的聚合规则,即FedFReq聚合规则,可以根据其频率调整相应的本地模型的权重。数值结果表明,我们提出的方法的性能明显优于当前基线的性能,并且对不同的非IID等级的客户数据具有强大。
translated by 谷歌翻译
Vertical Federated Learning (VFL) is widely utilized in real-world applications to enable collaborative learning while protecting data privacy and safety. However, previous works show that parties without labels (passive parties) in VFL can infer the sensitive label information owned by the party with labels (active party) or execute backdoor attacks to VFL. Meanwhile, active party can also infer sensitive feature information from passive party. All these pose new privacy and security challenges to VFL systems. We propose a new general defense method which limits the mutual information between private raw data, including both features and labels, and intermediate outputs to achieve a better trade-off between model utility and privacy. We term this defense Mutual Information Regularization Defense (MID). We theoretically and experimentally testify the effectiveness of our MID method in defending existing attacks in VFL, including label inference attacks, backdoor attacks and feature reconstruction attacks.
translated by 谷歌翻译
物联网中的智能汽车,智能手机和其他设备(物联网)通常具有多个传感器,会产生多模式数据。联合学习支持从不同设备收集大量多模式数据,而无需共享原始数据。转移学习方法有助于将知识从某些设备传输到其他设备。联合转移学习方法受益于联合学习和转移学习。这个新提出的联合转移学习框架旨在将数据岛与隐私保护联系起来。我们的构建基于联合学习和转移学习。与以前的联合转移学习相比,每个用户应具有相同模式的数据(所有单峰或全模式),我们的新框架更为通用,它允许使用用户数据的混合分布。核心策略是为我们的两种用户使用两种不同但固有连接的培训方法。仅对单峰数据(类型1)的用户采用监督学习,而自我监督的学习则用于使用多模式数据(类型2)的用户,以适用于每种模式的功能及其之间的连接。类型2的这种联系知识将在培训的后期阶段有助于1键入1。新框架中的培训可以分为三个步骤。在第一步中,将具有相同模式的数据的用户分组在一起。例如,仅具有声音信号的用户在第一组中,只有图像的用户在第二组中,并且具有多模式数据的用户在第三组中,依此类推。在第二步中,在小组内执行联合学习,在该小组中,根据小组的性质,使用监督的学习和自学学习。大多数转移学习发生在第三步中,从前步骤获得的网络中的相关部分是汇总的(联合)。
translated by 谷歌翻译
Federated Learning (FL) has emerged as a promising distributed learning paradigm with an added advantage of data privacy. With the growing interest in having collaboration among data owners, FL has gained significant attention of organizations. The idea of FL is to enable collaborating participants train machine learning (ML) models on decentralized data without breaching privacy. In simpler words, federated learning is the approach of ``bringing the model to the data, instead of bringing the data to the mode''. Federated learning, when applied to data which is partitioned vertically across participants, is able to build a complete ML model by combining local models trained only using the data with distinct features at the local sites. This architecture of FL is referred to as vertical federated learning (VFL), which differs from the conventional FL on horizontally partitioned data. As VFL is different from conventional FL, it comes with its own issues and challenges. In this paper, we present a structured literature review discussing the state-of-the-art approaches in VFL. Additionally, the literature review highlights the existing solutions to challenges in VFL and provides potential research directions in this domain.
translated by 谷歌翻译
启用摄像头的移动设备的无处不在导致在边缘生产大量未标记的视频数据。尽管已经提出了各种自我监督学习(SSL)方法来收集其潜在的时空表征,以进行特定于任务的培训,但实际挑战包括隐私问题和沟通成本,可以阻止SSL在大规模上部署。为了减轻这些问题,我们建议将联合学习(FL)用于视频SSL的任务。在这项工作中,我们评估了当前最新ART(SOTA)视频-SSL技术的性能,并确定其在与Kinetics-400数据集模拟的大规模FL设置中集成到大规模的FL设置时的缺陷。我们遵循,为视频(称为FedVSSL)提出了一个新颖的Federated SSL框架,该框架集成了不同的聚合策略和部分重量更新。广泛的实验证明了FEDVSSL的有效性和意义,因为它在UCF-101上优于下游检索任务的集中式SOTA,而HMDB-51的效率为6.66%。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
本文提出了一个传感器数据匿名模型,该模型接受了分散数据的培训,并在数据实用程序和隐私之间进行了理想的权衡,即使在收集到的传感器数据具有不同的基础分布的异质环境中也是如此。我们称为Blinder的匿名模型基于以对抗性方式训练的变异自动编码器和歧视网络。我们使用模型 - 不合稳定元学习框架来调整通过联合学习训练的匿名模型,以适应每个用户的数据分布。我们在不同的设置下评估了盲人,并表明它提供了端到端的隐私保护,以增加隐私损失高达4.00%,并将数据实用程序降低高达4.24%,而最新的数据实用程序则将其降低了4.24%。对集中数据培训的匿名模型。我们的实验证实,Blinder可以一次掩盖多个私人属性,并且具有足够低的功耗和计算开销,以便将其部署在边缘设备和智能手机上,以执行传感器数据的实时匿名化。
translated by 谷歌翻译
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
translated by 谷歌翻译
我们考虑垂直逻辑回归(VLR)接受了迷你批次梯度下降训练,这种环境吸引了行业日益增长的兴趣,并被证明在包括金融和医学研究在内的广泛应用中很有用。我们在一系列开源联合学习框架中提供了对VLR的全面和严格的隐私分析,其中协议之间可能会有所不同,但是获得了获得本地梯度的过程。我们首先考虑了诚实而有趣的威胁模型,其中忽略了协议的详细实施,并且仅假定共享过程,我们将其作为甲骨文提取。我们发现,即使在这种一般环境下,在适当的批处理大小约束下,仍然可以从另一方恢复单维功能和标签,从而证明了遵循相同理念的所有框架的潜在脆弱性。然后,我们研究基于同态加密(HE)的协议的流行实例。我们提出了一种主动攻击,该攻击通过生成和压缩辅助密文来显着削弱对先前分析中批处理大小的约束。为了解决基于HE的协议中的隐私泄漏,我们基于差异隐私(DP)开发了一种简单的对策,并为更新的算法提供实用程序和隐私保证。最后,我们从经验上验证了我们对基准数据集的攻击和防御的有效性。总之,我们的发现表明,仅依靠他的所有垂直联合学习框架可能包含严重的隐私风险,而DP已经证明了其在水平联合学习中的力量,也可以在垂直环境中起着至关重要的作用,尤其是当耦合时使用HE或安全的多方计算(MPC)技术。
translated by 谷歌翻译
联合学习(FL),使不同的医疗机构或客户能够在没有数据隐私泄漏的情况下进行协作培训模型,最近在医学成像社区中引起了极大的关注。尽管已经对客户间数据异质性进行了彻底的研究,但由于存在罕见疾病,阶级失衡问题仍然不足。在本文中,我们提出了一个新型的FL框架,用于医学图像分类,尤其是在处理罕见疾病的数据异质性方面。在Fedrare中,每个客户在本地训练一个模型,以通过客户内部监督对比度学习提取高度分离的潜在特征,以进行分类。考虑到有限的稀有疾病数据,我们建立了积极的样本队列以进行增强(即数据重采样)。 Fedrare中的服务器将从客户端收集潜在功能,并自动选择最可靠的潜在功能作为发送给客户的指南。然后,每个客户都会通过局部间的对比损失共同训练,以使其潜在特征与完整课程的联合潜在特征保持一致。通过这种方式,跨客户的参数/特征差异有效地最小化,从而可以更好地收敛和性能改进。关于皮肤病变诊断的公共可用数据集的实验结果表明,Fedrare的表现出色。在四个客户没有罕见病样本的10客户联合环境下,Fedrare的平均水平准确度平均增长了9.60%和5.90%,与FedAvg和FedAvg的基线框架和FedArt方法分别相比。考虑到在临床情况下存在罕见疾病的董事会,我们认为Fedrare将使未来的FL框架设计受益于医学图像分类。本文的源代码可在https://github.com/wnn2000/fedrare上公开获得。
translated by 谷歌翻译
最近,事物的人工智能(Aiot)一直在引起人们的关注,具有通过事物的网络连接提供高度智能服务的有趣愿景,从而导致了先进的AI驱动生态。但是,对数据隐私的最新监管限制排除将敏感的本地数据上传到数据中心,并以集中式方法利用它们。在这种情况下,直接应用联合学习算法几乎不能满足效率和准确性的工业要求。因此,我们在面部识别应用方面为AIOT提出了一个有效的工业联合学习框架。具体而言,我们建议利用转移学习的概念来加快设备上的联合培训,并进一步介绍私人投影仪的新颖设计,该设计有助于保护共享梯度,而不会产生额外的记忆消耗或计算成本。对亚洲私人面部数据集的实证研究表明,我们的方法仅在20轮沟通中就可以实现高认识的准确性,这表明了其在预测和培训方面的有效性。
translated by 谷歌翻译