Gaussian process regression (GPR) has been a well-known machine learning method for various applications such as uncertainty quantifications (UQ). However, GPR is inherently a data-driven method, which requires sufficiently large dataset. If appropriate physics constraints (e.g. expressed in partial differential equations) can be incorporated, the amount of data can be greatly reduced and the accuracy further improved. In this work, we propose a hybrid data driven-physics constrained Gaussian process regression framework. We encode the physics knowledge with Boltzmann-Gibbs distribution and derive our model through maximum likelihood (ML) approach. We apply deep kernel learning method. The proposed model learns from both data and physics constraints through the training of a deep neural network, which serves as part of the covariance function in GPR. The proposed model achieves good results in high-dimensional problem, and correctly propagate the uncertainty, with very limited labelled data provided.
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
物理启发的潜力模型为纯粹的数据驱动工具提供可解释的替代品,用于动态系统的推断。它们携带微分方程的结构和高斯过程的灵活性,产生可解释的参数和动态施加的潜在功能。然而,与这些模型相关联的现有推理技术依赖于在分析形式中很少可用的后内核术语的精确计算。大多数与从业者相关的应用程序,例如Hill方程或扩散方程,因此是棘手的。在本文中,我们通过提出对一般类非线性和抛物面部分微分方程潜力模型的变分解决方案来克服这些计算问题。此外,我们表明,神经操作员方法可以将我们的模型扩展到数千个实例,实现快速,分布式计算。我们通过在几个任务中实现竞争性能,展示了我们框架的效力和灵活性,其中核的核心不同程度的遗传性。
translated by 谷歌翻译
物理建模对于许多现代科学和工程应用至关重要。从数据科学或机器学习的角度来看,更多的域 - 不可吻合,数据驱动的模型是普遍的,物理知识 - 通常表示为微分方程 - 很有价值,因为它与数据是互补的,并且可能有可能帮助克服问题例如数据稀疏性,噪音和不准确性。在这项工作中,我们提出了一个简单但功能强大且通用的框架 - 自动构建物理学,可以将各种微分方程集成到高斯流程(GPS)中,以增强预测准确性和不确定性量化。这些方程可以是线性或非线性,空间,时间或时空,与未知的源术语完全或不完整,等等。基于内核分化,我们在示例目标函数,方程相关的衍生物和潜在源函数之前构建了GP,这些函数全部来自多元高斯分布。采样值被馈送到两个可能性:一个以适合观测值,另一个符合方程式。我们使用美白方法来逃避采样函数值和内核参数之间的强依赖性,并开发出一种随机变分学习算法。在模拟和几个现实世界应用中,即使使用粗糙的,不完整的方程式,自动元素都显示出对香草GPS的改进。
translated by 谷歌翻译
Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
我们提出了一种基于深度学习的代理模型,用于解决高维不确定性量化和不确定性传播问题。通过将众所周知的U-Net架构与高斯门控线性网络(GGLN)集成并称为所界线线性网络引起的U-Net或Glu-Net,通过将众所周知的U-Net架构进行了开发了建议的深度学习架构。所提出的Glu-Net将不确定性传播问题视为图像回归的图像,因此是极其数据效率。此外,它还提供了预测性不确定性的估计。 Glu-Net的网络架构不太复杂,参数比当代作品较少44 \%。我们说明了所提议的Glu-net在稀疏数据场景下在不确定性下解决达西流动问题的表现。我们认为随机输入维度最高可达4225.使用香草蒙特卡罗模拟产生基准结果。即使没有关于输入的结构的信息提供对网络的结构的信息,我们也观察到所提出的Glu-Net是准确的,非常有效。通过改变训练样本大小和随机输入维度来进行案例研究以说明所提出的方法的稳健性。
translated by 谷歌翻译
线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,兴趣在于使用对系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展,如何使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短的GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度尺度)的点估计值。
translated by 谷歌翻译
本文介绍了一种基于Krnet(ADDA-KR)的自适应深度近似策略,用于求解稳态Fokker-Planck(F-P)方程。 F-P方程通常是高维度和在无限域上定义的,这限制了基于传统网格的数值方法的应用。通过Knothe-Rosenblatt重新排列,我们的新提出的基于流的生成模型称为KrNet,提供了一种概率密度函数的家族,以作为Fokker-Planck方程的有效解决方案候选者,这与传统的计算方法较弱的维度依赖性较弱并且可以有效地估计一般的高维密度函数。为了获得用于F-P方程的近似的有效随机搭配点,我们开发了一种自适应采样过程,其中使用每次迭代的近似密度函数来迭代地生成样本。我们介绍了ADDA-KR的一般框架,验证了其准确性并通过数值实验展示了其效率。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
操作员的学习框架由于其能够在两个无限尺寸功能空间之间学习非线性图和神经网络的利用能力,因此最近成为应用机器学习领域中最相关的领域之一。尽管这些框架在建模复杂现象方面具有极大的能力,但它们需要大量数据才能成功培训,这些数据通常是不可用或太昂贵的。但是,可以通过使用多忠诚度学习来缓解此问题,在这种学习中,通过使用大量廉价的低保真数据以及少量昂贵的高保真数据来训练模型。为此,我们开发了一个基于小波神经操作员的新框架,该框架能够从多保真数据集中学习。通过解决不同的问题,需要在两个忠诚度之间进行有效的相关性学习来证明开发模型的出色学习能力。此外,我们还评估了开发框架在不确定性定量中的应用。从这项工作中获得的结果说明了拟议框架的出色表现。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译
在这项工作中,我们提出了一种深度自适应采样(DAS)方法,用于求解部分微分方程(PDE),其中利用深神经网络近似PDE和深生成模型的解决方案,用于生成改进训练集的新的搭配点。 DAS的整体过程由两个组件组成:通过最小化训练集中的搭配点上的剩余损失来解决PDE,并生成新的训练集,以进一步提高电流近似解的准确性。特别地,我们将残差作为概率密度函数进行处理,并用一个被称为Krnet的深生成模型近似它。来自Krnet的新样品与残留物诱导的分布一致,即,更多样品位于大残留的区域中,并且较少的样品位于小残余区域中。类似于经典的自适应方法,例如自适应有限元,Krnet作为引导训练集的改进的错误指示器。与用均匀分布的搭配点获得的神经网络近似相比,发达的算法可以显着提高精度,特别是对于低规律性和高维问题。我们展示了一个理论分析,表明所提出的DAS方法可以减少误差并展示其与数值实验的有效性。
translated by 谷歌翻译
在本文中,我们提出了一种求解高维椭圆局部微分方程(PDE)的半群方法和基于神经网络的相关特征值问题。对于PDE问题,我们在半群运营商的帮助下将原始方程式重构为变分问题,然后解决神经网络(NN)参数化的变分问题。主要优点是在随机梯度下降训练期间不需要混合的二阶衍生计算,并且由半群运算符自动考虑边界条件。与Pinn \ Cite {Raissi2019physics}和DeepRitz \ Cite {Weinan2018Deep}不同的流行方法,其中仅通过惩罚功能强制执行,因此改变了真实解决方案,所提出的方法能够解决没有惩罚功能的边界条件它即使添加了惩罚功能,它也会给出正确的真实解决方案,感谢semigoup运算符。对于特征值问题,提出了一种原始方法,有效地解析了简单的标量双变量的约束,并与BSDE求解器\ Cite {Han202020Solving}相比,诸如与线性相关的特征值问题之类的问题相比,算法更快地算法SCHR \“Odinger操作员。提供了数值结果以证明所提出的方法的性能。
translated by 谷歌翻译
机器学习中的不确定性量化(UQ)目前正在引起越来越多的研究兴趣,这是由于深度神经网络在不同领域的快速部署,例如计算机视觉,自然语言处理以及对风险敏感应用程序中可靠的工具的需求。最近,还开发了各种机器学习模型,以解决科学计算领域的问题,并适用于计算科学和工程(CSE)。物理知识的神经网络和深层操作员网络是两个这样的模型,用于求解部分微分方程和学习操作员映射。在这方面,[45]中提供了专门针对科学机器学习(SCIML)模型量身定制的UQ方法的全面研究。然而,尽管具有理论上的优点,但这些方法的实施并不简单,尤其是在大规模的CSE应用程序中,阻碍了他们在研究和行业环境中的广泛采用。在本文中,我们提出了一个开源python图书馆(https://github.com/crunch-uq4mi),称为Neuraluq,并伴有教育教程,用于以方便且结构化的方式采用SCIML的UQ方法。该图书馆既专为教育和研究目的,都支持多种现代UQ方法和SCIML模型。它基于简洁的工作流程,并促进了用户的灵活就业和易于扩展。我们首先提出了神经脉的教程,随后在四个不同的示例中证明了其适用性和效率,涉及动态系统以及高维参数和时间依赖性PDE。
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译
神经操作员是一种深层建筑,可以学会解决(即学习)部分微分方程(PDE)的非线性解决方案操作员。这些模型的当前艺术状态不能提供明确的不确定性量化。可以说,这是这种任务的问题,而不是机器学习中的其他地方,因为PDE通常描述的动态系统通常表现出微妙的多尺度结构,这会使人类难以发现错误。在这项工作中,我们首先在高斯过程的形式主义中首先提供了数学上详细的贝叶斯公式(线性)版本。然后,我们使用贝叶斯深度学习的近似方法将这种分析治疗扩展到一般的深层神经操作员。我们通过为神经操作员提供不确定性量化来扩展对神经操作员的先前结果。结果,我们的方法能够识别病例,并提供结构化的不确定性估计值,而神经操作员无法很好地预测。
translated by 谷歌翻译