$ k $ -means集群是各学科的基本问题。此问题是非核解,并且标准算法仅保证找到本地最佳算法。利用[1]的本地解决方案的结构,我们提出了一种用于逃离不良局部解决方案并恢复全球解决方案(或地面真理)的一般算法框架。该框架包括迭代:(i)在本地解决方案中检测MIS指定的群集,并通过非本地操作来改进当前本地解决方案。我们讨论这些步骤的实施,并阐明所提出的框架如何从几何视角统一文献中的k $ -means算法的变体。此外,我们介绍了所提出的框架的两个自然扩展,其中初始数量的群集被遗漏。我们为我们的方法提供了理论理的理由,这是通过广泛的实验证实的。
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译
We introduce a sketch-and-solve approach to speed up the Peng-Wei semidefinite relaxation of k-means clustering. When the data is appropriately separated we identify the k-means optimal clustering. Otherwise, our approach provides a high-confidence lower bound on the optimal k-means value. This lower bound is data-driven; it does not make any assumption on the data nor how it is generated. We provide code and an extensive set of numerical experiments where we use this approach to certify approximate optimality of clustering solutions obtained by k-means++.
translated by 谷歌翻译
Originally, tangles were invented as an abstract tool in mathematical graph theory to prove the famous graph minor theorem. In this paper, we showcase the practical potential of tangles in machine learning applications. Given a collection of cuts of any dataset, tangles aggregate these cuts to point in the direction of a dense structure. As a result, a cluster is softly characterized by a set of consistent pointers. This highly flexible approach can solve clustering problems in various setups, ranging from questionnaires over community detection in graphs to clustering points in metric spaces. The output of our proposed framework is hierarchical and induces the notion of a soft dendrogram, which can help explore the cluster structure of a dataset. The computational complexity of aggregating the cuts is linear in the number of data points. Thus the bottleneck of the tangle approach is to generate the cuts, for which simple and fast algorithms form a sufficient basis. In our paper we construct the algorithmic framework for clustering with tangles, prove theoretical guarantees in various settings, and provide extensive simulations and use cases. Python code is available on github.
translated by 谷歌翻译
我们提出了一种估计具有标称分类数据的高维线性模型的方法。我们的估算器,称为范围,通过使其相应的系数完全相等来融合水平。这是通过对分类变量的系数的阶数统计之间的差异之间的差异来实现这一点,从而聚类系数。我们提供了一种算法,用于精确和有效地计算在具有潜在许多级别的单个变量的情况下的总体上的最小值的全局最小值,并且在多变量情况下在块坐标血管下降过程中使用它。我们表明,利用未知级别融合的Oracle最小二乘解决方案是具有高概率的坐标血缘的极限点,只要真正的级别具有一定的最小分离;已知这些条件在单变量案例中最小。我们展示了在一系列实际和模拟数据集中的范围的有利性能。 R包的R包Catreg实现线性模型的范围,也可以在CRAN上提供逻辑回归的版本。
translated by 谷歌翻译
聚类是基于它们的相似性对组对象的重要探索性数据分析技术。广泛使用的$ k $ -MEANS聚类方法依赖于一些距离的概念将数据划分为较少数量的组。在欧几里得空间中,$ k $ -Means的基于质心和基于距离的公式相同。在现代机器学习应用中,数据通常是作为概率分布而出现的,并且可以使用最佳运输指标来处理测量值数据。由于瓦斯坦斯坦空间的非负亚历山德罗夫曲率,巴里中心遭受了规律性和非舒适性问题。 Wasserstein Barycenters的特殊行为可能使基于质心的配方无法代表集群内的数据点,而基于距离的$ K $ -MEANS方法及其半决赛计划(SDP)可以恢复真实的方法集群标签。在聚集高斯分布的特殊情况下,我们表明SDP放松的Wasserstein $ k $ - 金钱可以实现精确的恢复,因为这些集群按照$ 2 $ - WASSERSTEIN MERTRIC进行了良好的分离。我们的仿真和真实数据示例还表明,基于距离的$ K $ -Means可以比基于标准的基于质心的$ k $ -Means获得更好的分类性能,用于聚类概率分布和图像。
translated by 谷歌翻译
群集分析需要许多决定:聚类方法和隐含的参考模型,群集数,通常,几个超参数和算法调整。在实践中,一个分区产生多个分区,基于验证或选择标准选择最终的分区。存在丰富的验证方法,即隐式或明确地假设某个聚类概念。此外,它们通常仅限于从特定方法获得的分区上操作。在本文中,我们专注于可以通过二次或线性边界分开的群体。参考集群概念通过二次判别符号函数和描述集群大小,中心和分散的参数定义。我们开发了两个名为二次分数的群集质量标准。我们表明这些标准与从一般类椭圆对称分布产生的组一致。对这种类型的组追求在应用程序中是常见的。研究了与混合模型和模型的聚类的似然理论的连接。基于Bootstrap重新采样的二次分数,我们提出了一个选择规则,允许在许多聚类解决方案中选择。所提出的方法具有独特的优点,即它可以比较不能与其他最先进的方法进行比较的分区。广泛的数值实验和实际数据的分析表明,即使某些竞争方法在某些设置中出现优越,所提出的方法也实现了更好的整体性能。
translated by 谷歌翻译
我们考虑在线无替代环境中的$ k $ - emeans集群,其中一个人必须在流媒体传输时立即拍摄每个数据点$ x_t $ x_t $。我们的作品专注于\ emph {任意订单}假设没有限制点数$ x $如何订购或生成。与最佳聚类成本相比,在其近似值中评估该设置中的算法,它们选择的中心数及其内存使用率。最近,Bhattacharjee和Moshkovitz(2020)定义了一个参数,$ lower _ {\ alpha,k}(x)$,它控制最小的中心数量的任何$ \ alpha $-xpruckatimation聚类算法,必须给予任何金额输入$ x $。为了补充结果,我们提供了第一个算法,它需要$ \ tilde {o}(下_ {\ alpha,k}(x))$中心(k,log n $)同时实现恒定近似除了保存中心所需的内存之外,还使用$ \ tilde {o}(k)$内存。我们的算法显示它在无替代设置中,可以在使用很少的额外内存时占用订单 - 最佳中心。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
基于中心的聚类算法的最新进展通过隐式退火来打击贫穷的本地最小值,并使用一系列普遍的手段来打击。这些方法是劳埃德(Lloyd)著名的$ k $ -MEANS算法的变体,最适合于球形簇,例如由高斯数据引起的簇。在本文中,我们将这些算法的进步桥接为布雷格曼(Bregman)差异下的硬聚类的经典工作,这些工作享有指数级家庭分布的培养,因此非常适合由数据生成机制的广度引起的聚类对象。布雷格曼分歧的优雅特性使我们能够以简单透明的算法维护封闭的表单更新,此外,还引发了新的理论论点,以建立有限的样本范围,以放松在现有的艺术状态下做出的有限支持假设。此外,我们考虑对模拟实验进行彻底的经验分析和降雨数据的案例研究,发现所提出的方法在各种非高斯数据设置中都优于现有的同行方法。
translated by 谷歌翻译
内部群集有效性度量(例如Calinski-Harabasz,Dunn或Davies-Bouldin指数)经常用于选择适当数量的分区数量,应将数据集分为二。在本文中,我们考虑如果将这些索引视为无监督学习活动中的客观功能会发生什么。关于轮廓指数的最佳分组是否真的有意义?事实证明,许多群集有效性指数促进了聚类,这些聚类与专家知识相匹配。我们还引入了邓恩指数的一个新的,表现出色的变体,该变体是建立在OWA操作员和接近邻居图的基础上的,因此,无论其形状如何,都可以更好地相互分离。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
模糊或柔软$ k $ -means目标是众所周知的$ k $ -means问题的流行泛化,将$ k $ -means扩展到不确定,模糊和否则难以群集的数据集的聚类能力。在本文中,我们提出了一个半监督的主动聚类框架,其中允许学习者与Oracle(域专家)进行交互,询问一组所选项目之间的相似性。我们研究了本框架中的聚类查询和计算复杂性。我们证明具有一些这样的相似性查询使得一个人能够将多项式时间近似算法获得到另外的辅助NP难题。特别是,我们提供了在此设置中的模糊聚类的算法,该算法询问$ O(\ mathsf {poly}(k)\ log n)$相似查询并使用多项式 - 时间复杂度运行,其中$ n $是项目的数量。模糊$ k $ -means目标是非渗透,$ k $ -means作为一个特殊情况,相当于一些其他通用非核解问题,如非负矩阵分解。普遍存在的LLOYD型算法(或交替的最小化算法)可以以局部最小粘在一起。我们的结果表明,通过制作一些相似性查询,问题变得更加易于解决。最后,我们通过现实世界数据集测试我们的算法,展示了其在现实世界应用中的有效性。
translated by 谷歌翻译
我们研究了清单可解放的平均估计问题,而对手可能会破坏大多数数据集。具体来说,我们在$ \ mathbb {r} ^ $和参数$ 0 <\ alpha <\ frac 1 2 $中给出了一个$ $ n $ points的$ t $ points。$ \ alpha $ -flaction的点$ t $是iid来自乖巧的分发$ \ Mathcal {D} $的样本,剩余的$(1- \ alpha)$ - 分数是任意的。目标是输出小型的vectors列表,其中至少一个接近$ \ mathcal {d} $的均值。我们开发新的算法,用于列出可解码的平均值估计,实现几乎最佳的统计保证,运行时间$ O(n ^ {1 + \ epsilon_0} d)$,适用于任何固定$ \ epsilon_0> 0 $。所有先前的此问题算法都有额外的多项式因素在$ \ frac 1 \ alpha $。我们与额外技术一起利用此结果,以获得用于聚类混合物的第一个近几个线性时间算法,用于分开的良好表现良好的分布,几乎匹配谱方法的统计保证。先前的聚类算法本身依赖于$ k $ -pca的应用程序,从而产生$ \ omega(n d k)$的运行时。这标志着近二十年来这个基本统计问题的第一次运行时间改进。我们的方法的起点是基于单次矩阵乘法权重激发电位减少的$ \ Alpha \至1 $制度中的新颖和更简单的近线性时间较强的估计算法。在Diakonikolas等人的迭代多滤波技术的背景下,我们迫切地利用了这种新的算法框架。 '18,'20,提供一种使用一维投影的同时群集和下群点的方法 - 因此,绕过先前算法所需的$ k $ -pca子程序。
translated by 谷歌翻译
本文研究了聚类基质值观测值的计算和统计限制。我们提出了一个低级别的混合模型(LRMM),该模型适用于经典的高斯混合模型(GMM)来处理基质值观测值,该观测值假设人口中心矩阵的低级别。通过集成Lloyd算法和低级近似值设计了一种计算有效的聚类方法。一旦定位良好,该算法将快速收敛并达到最小值最佳的指数型聚类错误率。同时,我们表明一种基于张量的光谱方法可提供良好的初始聚类。与GMM相当,最小值最佳聚类错误率是由分离强度(即种群中心矩阵之间的最小距离)决定的。通过利用低级度,提出的算法对分离强度的要求较弱。但是,与GMM不同,LRMM的统计难度和计算难度的特征是信号强度,即最小的人口中心矩阵的非零奇异值。提供了证据表明,即使信号强度不够强,即使分离强度很强,也没有多项式时间算法是一致的。在高斯以下噪声下进一步证明了我们低级劳埃德算法的性能。讨论了LRMM下估计和聚类之间的有趣差异。通过全面的仿真实验证实了低级劳埃德算法的优点。最后,我们的方法在现实世界数据集的文献中优于其他方法。
translated by 谷歌翻译
A major challenge when using k-means clustering often is how to choose the parameter k, the number of clusters. In this letter, we want to point out that it is very easy to draw poor conclusions from a common heuristic, the "elbow method". Better alternatives have been known in literature for a long time, and we want to draw attention to some of these easy to use options, that often perform better. This letter is a call to stop using the elbow method altogether, because it severely lacks theoretic support, and we want to encourage educators to discuss the problems of the method -- if introducing it in class at all -- and teach alternatives instead, while researchers and reviewers should reject conclusions drawn from the elbow method.
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
Clustering is a fundamental problem in many areas, which aims to partition a given data set into groups based on some distance measure, such that the data points in the same group are similar while that in different groups are dissimilar. Due to its importance and NP-hardness, a lot of methods have been proposed, among which evolutionary algorithms are a class of popular ones. Evolutionary clustering has found many successful applications, but all the results are empirical, lacking theoretical support. This paper fills this gap by proving that the approximation performance of the GSEMO (a simple multi-objective evolutionary algorithm) for solving the three popular formulations of clustering, i.e., $k$-center, $k$-median and $k$-means, can be theoretically guaranteed. Furthermore, we prove that evolutionary clustering can have theoretical guarantees even when considering fairness, which tries to avoid algorithmic bias, and has recently been an important research topic in machine learning.
translated by 谷歌翻译