The use of emojis affords a visual modality to, often private, textual communication. The task of predicting emojis however provides a challenge for machine learning as emoji use tends to cluster into the frequently used and the rarely used emojis. Much of the machine learning research on emoji use has focused on high resource languages and has conceptualised the task of predicting emojis around traditional server-side machine learning approaches. However, traditional machine learning approaches for private communication can introduce privacy concerns, as these approaches require all data to be transmitted to a central storage. In this paper, we seek to address the dual concerns of emphasising high resource languages for emoji prediction and risking the privacy of people's data. We introduce a new dataset of $118$k tweets (augmented from $25$k unique tweets) for emoji prediction in Hindi, and propose a modification to the federated learning algorithm, CausalFedGSD, which aims to strike a balance between model performance and user privacy. We show that our approach obtains comparative scores with more complex centralised models while reducing the amount of data required to optimise the models and minimising risks to user privacy.
translated by 谷歌翻译
用户每天在各种社交网络平台上暴露于大量有害内容。一种解决方案是使用机器学习技术开发在线审核工具。但是,通过在线平台处理用户数据需要遵守隐私政策。联合学习(FL)是ML范式,在该范围内,在用户设备上本地进行培训。尽管FL框架符合GDPR政策,但仍然可能发生隐私泄漏。例如,访问最终训练模型的攻击者可以成功地对参与培训过程的用户的数据进行不必要的推断。在本文中,我们为包含差异隐私(DP)的在线内容审核提出了一个隐私的FL框架。为了证明我们的方法的可行性,我们专注于在Twitter上检测有害内容 - 但总体概念可以推广到其他类型的不当行为。我们以FL方式模拟了文本分类器,该分类器可以检测具有有害内容的推文。我们表明,对于DP和非DP FL版本,提出的FL框架的性能可以接近集中式方法。此外,即使有少数客户(每个数据点)可用于FL培训,它也具有高性能。当减少客户端数量(从50到10)或每个客户端的数据点(从1K到0.1K)时,分类器仍然可以达到约81%的AUC。此外,我们将评估扩展到其他四个Twitter数据集,这些数据集捕获了不同类型的用户行为不当,并且仍然获得了有希望的性能(61%-80%的AUC)。最后,我们在FL培训阶段探索用户设备上的开销,并表明本地培训不会引入过多的CPU利用率和内存消耗开销。
translated by 谷歌翻译
个性化联合学习(FL)是佛罗里达州的一个新兴研究领域,在客户之间存在数据异质性的情况下,可以学习一个易于适应的全球模型。但是,个性化FL的主要挑战之一是,由于客户数据与服务器隔离以确保隐私,因此非常依赖客户的计算资源来计算高阶梯度。为了解决这个问题,我们专注于服务器可以独立于客户数据独立于客户数据的问题设置,这是各种应用程序中普遍的问题设置,但在现有文献中相对尚未探索。具体而言,我们提出了FedSim,这是一种针对个性化FL的新方法,该方法积极利用此类服务​​器数据来改善服务器中的元梯度计算以提高个性化性能。在实验上,我们通过各种基准和消融证明了FEDSIM在准确性方面优于现有方法,通过计算服务器中的完整元梯度,在计算上更有效,并且收敛速度高达34.2%。
translated by 谷歌翻译
随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译
自然语言处理(NLP)技术可以使用人的话语来帮助诊断诸如抑郁症之类的医疗状况。抑郁症是一种严重的医学疾病,可能会对人们的感觉,思维和行为产生不利影响,这可能导致情绪和身体上的问题。由于此类数据的敏感性,需要采取隐私措施来使用此类数据处理和培训模型。在这项工作中,我们研究了差异隐私(DP)在集中式学习和联合学习(FL)设置中对培训上下文化语言模型(Bert,Albert,Roberta和Distilbert)的影响。我们提供有关如何私下培训NLP模型以及哪些架构和设置提供更理想的隐私公用事业权衡的见解。我们设想这项工作将用于未来的医疗保健和心理健康研究,以使病史保持私密。因此,我们提供了这项工作的开源实施。
translated by 谷歌翻译
Continuous behavioural authentication methods add a unique layer of security by allowing individuals to verify their unique identity when accessing a device. Maintaining session authenticity is now feasible by monitoring users' behaviour while interacting with a mobile or Internet of Things (IoT) device, making credential theft and session hijacking ineffective. Such a technique is made possible by integrating the power of artificial intelligence and Machine Learning (ML). Most of the literature focuses on training machine learning for the user by transmitting their data to an external server, subject to private user data exposure to threats. In this paper, we propose a novel Federated Learning (FL) approach that protects the anonymity of user data and maintains the security of his data. We present a warmup approach that provides a significant accuracy increase. In addition, we leverage the transfer learning technique based on feature extraction to boost the models' performance. Our extensive experiments based on four datasets: MNIST, FEMNIST, CIFAR-10 and UMDAA-02-FD, show a significant increase in user authentication accuracy while maintaining user privacy and data security.
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
本文提出了一个传感器数据匿名模型,该模型接受了分散数据的培训,并在数据实用程序和隐私之间进行了理想的权衡,即使在收集到的传感器数据具有不同的基础分布的异质环境中也是如此。我们称为Blinder的匿名模型基于以对抗性方式训练的变异自动编码器和歧视网络。我们使用模型 - 不合稳定元学习框架来调整通过联合学习训练的匿名模型,以适应每个用户的数据分布。我们在不同的设置下评估了盲人,并表明它提供了端到端的隐私保护,以增加隐私损失高达4.00%,并将数据实用程序降低高达4.24%,而最新的数据实用程序则将其降低了4.24%。对集中数据培训的匿名模型。我们的实验证实,Blinder可以一次掩盖多个私人属性,并且具有足够低的功耗和计算开销,以便将其部署在边缘设备和智能手机上,以执行传感器数据的实时匿名化。
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
作为保护隐私的协作机器学习范式,联邦学习在行业中越来越受到关注。随着需求的巨大增长,有许多联合学习平台使联邦参与者可以从头开始建立并建立联合模型。但是,退出的平台高度侵入性,复杂且难以与建造的机器学习模型集成。对于许多已经具有成熟服务模型的现实世界企业,现有的联合学习平台具有很高的进入障碍和发展成本。本文介绍了一个简单而实用的联合学习插件,其灵感来自合奏学习,被称为包装,使参与者能够以最低的成本建立/加入使用现有模型的联合系统。 Wrapperfl通过简单地将其连接到现有模型的输入和输出接口,而无需重新开发,从而大大减少了人力和资源的开销。我们在异质数据分布和异质模型下验证我们的建议方法。实验结果表明,在实际设置下,包装可以成功地应用于广泛的应用程序,并以低成本的联合学习改善本地模型。
translated by 谷歌翻译
有效分布式参数的快速全局聚合对于联邦学习(FL)至关重要,这需要足够的带宽来进行参数通信和足够的用户数据以进行本地培训。否则,FL可能会花费过多的训练时间来收敛并产生不准确的模型。在本文中,我们提出了一个全新的FL框架,即Pressfl,该框架将联合模型培训取代联合的及时培训,即让联邦参与者培训提示而不是共享模型,以同时实现有效的全球聚合和本地培训通过以分布式方式利用基础模型(FM)的功率来利用数据不足。 ProSTERFL将现成的FM(即剪辑)运送到分布式客户端,这些客户将根据很少的本地数据进行合作培训共享的软提示。由于提示fl只需要更新提示而不是整个模型,因此本地培训和全局聚合都可以大大加速。经过大规模数据训练的FM可以通过训练有素的软提示为分布式用户任务提供强大的适应能力。我们通过广泛的实验对提示进行了经验分析,并在系统的可行性,用户隐私和性能方面表现出了优势。
translated by 谷歌翻译
联合学习(FL)通过汇总模型更新,以隐私的方式对分散数据进行了全球模型培训。但是,对于使用具有大量参数的预训练的语言模型(PLM)的许多自然语言处理(NLP)任务,与FL相关的沟通成本相当大。最近,迅速调整了一些不修改PLM的软提示的调音,它作为新的学习范式取得了出色的表现。因此,我们要组合两种方法,并探索在FL下迅速调整的效果。在本文中,我们提出“ FedPrompt”作为第一个工作研究促使使用FL以模型分开学习方式进行调整,并证明该研究大大降低了沟通成本,只有PLMS参数的0.01%,而准确性几乎没有降低。在IID和非IID数据分布上。这提高了FL方法的效率,同时还可以在及时调整中保护数据隐私。此外,PLMS,提示在公共平台和个人用户之间被上传和下载,因此我们试图弄清楚是否仍然只有使用后门威胁在FL场景中软提示。我们通过对FedPrompt的数据中毒进一步进行后门攻击。我们的实验表明,正常的后门攻击无法实现高攻击成功率,证明了FedPrompt的稳健性。我们希望这项工作能够促进FL的应用,并提高对可能的安全威胁的认识。
translated by 谷歌翻译
With increasing privacy concerns on data, recent studies have made significant progress using federated learning (FL) on privacy-sensitive natural language processing (NLP) tasks. Much literature suggests fully fine-tuning pre-trained language models (PLMs) in the FL paradigm can mitigate the data heterogeneity problem and close the performance gap with centralized training. However, large PLMs bring the curse of prohibitive communication overhead and local model adaptation costs for the FL system. To this end, we introduce various parameter-efficient tuning (PETuning) methods into federated learning. Specifically, we provide a holistic empirical study of representative PLMs tuning methods in FL. The experimental results cover the analysis of data heterogeneity levels, data scales, and different FL scenarios. Overall communication overhead can be significantly reduced by locally tuning and globally aggregating lightweight model parameters while maintaining acceptable performance in various FL settings. To facilitate the research of PETuning in FL, we also develop a federated tuning framework FedPETuning, which allows practitioners to exploit different PETuning methods under the FL training paradigm conveniently. The source code is available at \url{https://github.com/iezhuozhuo/FedETuning/tree/deltaTuning}.
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
Federated learning is a popular paradigm for machine learning. Ideally, federated learning works best when all clients share a similar data distribution. However, it is not always the case in the real world. Therefore, the topic of federated learning on heterogeneous data has gained more and more effort from both academia and industry. In this project, we first do extensive experiments to show how data skew and quantity skew will affect the performance of state-of-art federated learning algorithms. Then we propose a new algorithm FedMix which adjusts existing federated learning algorithms and we show its performance. We find that existing state-of-art algorithms such as FedProx and FedNova do not have a significant improvement in all testing cases. But by testing the existing and new algorithms, it seems that tweaking the client side is more effective than tweaking the server side.
translated by 谷歌翻译
联合学习(FL)以来已提议已应用于许多领域,例如信用评估,医疗等。由于网络或计算资源的差异,客户端可能不会同时更新其渐变可能需要花费等待或闲置的时间。这就是为什么需要异步联合学习(AFL)方法。AFL中的主要瓶颈是沟通。如何在模型性能和通信成本之间找到平衡是AFL的挑战。本文提出了一种新的AFL框架VAFL。我们通过足够的实验验证了算法的性能。实验表明,VAFL可以通过48.23 \%的平均通信压缩速率降低约51.02 \%的通信时间,并允许模型更快地收敛。代码可用于\ url {https://github.com/robai-lab/vafl}
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
本文介绍了一个修改后的用户数据报协议(UDP),用于联合学习,以确保模型参数传输过程中的效率和可靠性,从而在每个联合学习回合中最大程度地发挥全局模型的潜力。在开发和测试此协议时,使用NS3模拟器来模拟通过网络的数据包传输,而Google TensorFlow用于创建自定义的联合学习环境。在此初步实现中,模拟包含三个节点,其中两个节点是客户端节点,一个是服务器节点。本文获得的结果提供了对未来联邦学习的协议能力的信心协议和修改后的UDP协议将进行模拟。还将探索修改后的UDP的优化,以提高效率,同时确保可靠性。
translated by 谷歌翻译