间接歧视是算法模型中主要关注的问题。在保险定价中尤其如此,不允许使用保护保单持有人特征进行保险定价。简单地忽略受保护的保单持有人的信息不是一个适当的解决方案,因为这仍然允许从非保护特征中推断出受保护特征的可能性。这导致所谓的代理或间接歧视。尽管代理歧视在质量上与机器学习中的集体公平概念不同,但提出了这些群体公平概念,以“平滑”受保护特征在计算保险价格中的影响。本说明的目的是根据保险定价分享有关团体公平概念的一些想法,并讨论其含义。我们提出了一个没有替代歧视的统计模型,因此从保险定价的角度来看,没有问题。但是,我们发现该统计模型中的规范价格无法满足三个最受欢迎的集体公正公理中的任何一个。这似乎令人困惑,我们欢迎对我们的示例和这些集体公正公理对非歧视性保险定价的有用性的反馈。
translated by 谷歌翻译
在预测建模的应用中,例如保险定价,间接或代理歧视是一个重大关注的问题。也就是说,存在一种受保护的保单持有人特征被预测模型隐含地推断出的受保护保单持有人特征的可能性,因此对价格产生了不良(或非法)的影响。解决此问题的技术解决方案依赖于使用所有保单持有人特征(包括受保护的人)建立最佳模型,然后平均为计算个人价格的受保护特征。但是,这种方法需要对保单持有人的受保护特征的充分了解,这本身可能是有问题的。在这里,我们通过使用多任务神经网络体系结构进行索赔预测来解决此问题,该预测只能使用有关受保护特征的部分信息进行培训,并且它产生的价格没有代理歧视。我们证明了所提出的模型的使用,我们发现其预测精度与常规的前馈神经网络相媲美(完整信息)。但是,在部分缺少保单持有人信息的情况下,这个多任务网络显然具有出色的性能。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it is the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school. * Equal contribution. This work was done while JL was a Research Fellow at the Alan Turing Institute. 2 https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-dataand-civil-rights 31st Conference on Neural Information Processing Systems (NIPS 2017),
translated by 谷歌翻译
近年来,解决机器学习公平性(ML)和自动决策的问题引起了处理人工智能的科学社区的大量关注。已经提出了ML中的公平定义的一种不同的定义,认为不同概念是影响人口中个人的“公平决定”的不同概念。这些概念之间的精确差异,含义和“正交性”尚未在文献中完全分析。在这项工作中,我们试图在这个解释中汲取一些订单。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
At the core of insurance business lies classification between risky and non-risky insureds, actuarial fairness meaning that risky insureds should contribute more and pay a higher premium than non-risky or less-risky ones. Actuaries, therefore, use econometric or machine learning techniques to classify, but the distinction between a fair actuarial classification and "discrimination" is subtle. For this reason, there is a growing interest about fairness and discrimination in the actuarial community Lindholm, Richman, Tsanakas, and Wuthrich (2022). Presumably, non-sensitive characteristics can serve as substitutes or proxies for protected attributes. For example, the color and model of a car, combined with the driver's occupation, may lead to an undesirable gender bias in the prediction of car insurance prices. Surprisingly, we will show that debiasing the predictor alone may be insufficient to maintain adequate accuracy (1). Indeed, the traditional pricing model is currently built in a two-stage structure that considers many potentially biased components such as car or geographic risks. We will show that this traditional structure has significant limitations in achieving fairness. For this reason, we have developed a novel pricing model approach. Recently some approaches have Blier-Wong, Cossette, Lamontagne, and Marceau (2021); Wuthrich and Merz (2021) shown the value of autoencoders in pricing. In this paper, we will show that (2) this can be generalized to multiple pricing factors (geographic, car type), (3) it perfectly adapted for a fairness context (since it allows to debias the set of pricing components): We extend this main idea to a general framework in which a single whole pricing model is trained by generating the geographic and car pricing components needed to predict the pure premium while mitigating the unwanted bias according to the desired metric.
translated by 谷歌翻译
算法公平吸引了机器学习社区越来越多的关注。文献中提出了各种定义,但是它们之间的差异和联系并未清楚地解决。在本文中,我们回顾并反思了机器学习文献中先前提出的各种公平概念,并试图与道德和政治哲学,尤其是正义理论的论点建立联系。我们还从动态的角度考虑了公平的询问,并进一步考虑了当前预测和决策引起的长期影响。鉴于特征公平性的差异,我们提出了一个流程图,该流程图包括对数据生成过程,预测结果和诱导的影响的不同类型的公平询问的隐式假设和预期结果。本文展示了与任务相匹配的重要性(人们希望执行哪种公平性)和实现预期目的的手段(公平分析的范围是什么,什么是适当的分析计划)。
translated by 谷歌翻译
监管压力测试已成为在美国最大银行设定资本要求的主要工具。美联储使用机密模型来评估在共同的压力方案中针对银行特定投资组合的特定银行成果。作为政策,尽管机构之间存在相当多的异质性,但所有银行都使用相同的模型;单个银行认为,某些模型不适合其业务。在这场辩论中,我们问,单独量身定制的模型的合理聚集是什么?我们认为,简单地跨银行汇总数据平等对待银行,但会遭受两个缺陷的影响:它可能会扭曲合法投资组合功能的影响,并且很容易受到隐含的合法信息的隐含误导来推断银行身份。我们比较了回归公平的各种概念,以解决这些缺陷,考虑到预测准确性和平等待遇。在线性模型的设置中,我们主张估算,然后丢弃中心的银行固定效果,这是可取的,而不是简单地忽略整个银行的差异。我们提供证据表明总体影响可能是重要的。我们还讨论了非线性模型的扩展。
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
做出公正的决定对于在社交环境中实施机器学习算法至关重要。在这项工作中,我们考虑了反事实公平的著名定义[Kusner等,Neurips,2017]。首先,我们表明一种满足反事实公平的算法也满足人口统计学的偏见,这是一个更简单的公平限制。同样,我们表明所有满足人口统计学奇偶校验的算法都可以进行微不足道的修改以满足反事实公平。总之,我们的结果表明,反事实公平基本上等同于人口统计学,这对不断增长的反事实公平工作具有重要意义。然后,我们从经验上验证了我们的理论发现,分析了三种现有的算法,以针对三个简单的基准分析反事实公平。我们发现,在几个数据集上,两种简单的基准算法在公平,准确性和效率方面都优于所有三种现有算法。我们的分析使我们实现了一个具体的公平目标:保留受保护群体中个人的顺序。我们认为,围绕个人在受保护群体中的秩序的透明度使公平的算法更加值得信赖。根据设计,两个简单的基准算法满足了这个目标,而现有的反事实公平算法则不能。
translated by 谷歌翻译
We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy.In line with other studies, our notion is oblivious: it depends only on the joint statistics of the predictor, the target and the protected attribute, but not on interpretation of individual features. We study the inherent limits of defining and identifying biases based on such oblivious measures, outlining what can and cannot be inferred from different oblivious tests.We illustrate our notion using a case study of FICO credit scores.
translated by 谷歌翻译
最近的工作突出了因果关系在设计公平决策算法中的作用。但是,尚不清楚现有的公平因果概念如何相互关系,或者将这些定义作为设计原则的后果是什么。在这里,我们首先将算法公平性的流行因果定义组装成两个广泛的家庭:(1)那些限制决策对反事实差异的影响的家庭; (2)那些限制了法律保护特征(如种族和性别)对决策的影响。然后,我们在分析和经验上表明,两个定义的家庭\ emph {几乎总是总是} - 从一种理论意义上讲 - 导致帕累托占主导地位的决策政策,这意味着每个利益相关者都有一个偏爱的替代性,不受限制的政策从大型自然级别中绘制。例如,在大学录取决定的情况下,每位利益相关者都不支持任何对学术准备和多样性的中立或积极偏好的利益相关者,将不利于因果公平定义的政策。的确,在因果公平的明显定义下,我们证明了由此产生的政策要求承认所有具有相同概率的学生,无论学术资格或小组成员身份如何。我们的结果突出了正式的局限性和因果公平的常见数学观念的潜在不利后果。
translated by 谷歌翻译
在高赌注域中的机器学习工具的实际应用通常被调节为公平,因此预测目标应该满足相对于受保护属性的奇偶校验的一些定量概念。然而,公平性和准确性之间的确切权衡并不完全清楚,即使是对分类问题的基本范式也是如此。在本文中,我们通过在任何公平分类器的群体误差之和中提供较低的界限,在分类设置中表征统计奇偶校验和准确性之间的固有权衡。我们不可能的定理可以被解释为公平的某种不确定性原则:如果基本率不同,那么符合统计奇偶校验的任何公平分类器都必须在至少一个组中产生很大的错误。我们进一步扩展了这一结果,以便在学习公平陈述的角度下给出任何(大约)公平分类者的联合误差的下限。为了表明我们的下限是紧张的,假设Oracle访问贝叶斯(潜在不公平)分类器,我们还构造了一种返回一个随机分类器的算法,这是最佳和公平的。有趣的是,当受保护的属性可以采用超过两个值时,这个下限的扩展不承认分析解决方案。然而,在这种情况下,我们表明,通过解决线性程序,我们可以通过解决我们作为电视 - 重心问题的术语,电视距离的重心问题来有效地计算下限。在上面,我们证明,如果集团明智的贝叶斯最佳分类器是关闭的,那么学习公平的表示导致公平的替代概念,称为准确性奇偶校验,这使得错误率在组之间关闭。最后,我们还在现实世界数据集上进行实验,以确认我们的理论发现。
translated by 谷歌翻译
在本文中,我们介绍了一个公平的可解释框架,用于测量和解释分布级别的分类和回归模型中的偏差。在我们的工作中,受到dwork等人的想法。 (2012),我们使用Wassersein指标测量跨子群分布的模型偏差。 Wassersein度量标准的传输理论表征使我们考虑到模型分布的偏置的迹象,这反过来又会产生模型偏差分解为正和负组件。要了解预测因子如何促进模型偏差,我们介绍和理论上表征称为偏置解释的偏置预测器归因,并调查它们的稳定性。我们还为偏见解释提供了制定,以考虑缺失值的影响。此外,由于\ v {s} Trumbelj和Kononenko(2014)和Lundberg和Lee(2017)的动机,我们通过采用合作博弈论构建了添加剂偏见解释,并调查了它们的性质。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
通常,Gini索引没有提供一致的评分规则。因此,最大化Gini指数可能会导致错误的决定。主要问题是GINI指数是基于排名的分数,对校准敏感。我们表明,如果我们将其限制在自动校准的回归模型的类别中,则GINI索引允许其一致评分。
translated by 谷歌翻译
因果推理在人类如何理解世界并在日常生活中做出决策中具有必不可少的作用。虽然20美元的$ Century Science是因为使因果的主张过于强大且无法实现,但第21美元的$ Century是由因果关系的数学化和引入非确定性原因概念的因果关系的重返标志的。 \ cite {illari2011look}。除了其流行病学,政治和社会科学方面的常见用例外,因果关系对于在法律和日常意义上评估自动决定的公平性至关重要。我们提供了为什么因果关系对于公平评估特别重要的论点和例子。特别是,我们指出了非因果预测的社会影响以及依赖因果主张的法律反歧视过程。最后,我们讨论了在实际情况以及可能的解决方案中应用因果关系的挑战和局限性。
translated by 谷歌翻译
机器学习模型被批评反映了培训数据中的不公平偏见。我们通过直接引入公平的学习算法来解决这一目标,而不是通过介绍公平的学习算法来解决公平的合成数据,使任何下游学习者都是公平的。从不公平数据生成公平的合成数据 - 同时对潜在的数据生成过程(DGP)留下真实 - 是非微不足道的。在本文中,我们引入了Decaf:用于表格数据的GaN的公平合成数据发生器。通过Decaf,我们将DGP显式作为发电机的输入层中的结构因果模型嵌入,允许在其因果父母上重建每个变量。此过程启用推理时间扩大,其中可以策略性地删除偏置边缘以满足用户定义的公平要求。 Decaf框架是多功能的,与几个公平的定义兼容。在我们的实验中,我们表明Decaf成功地消除了不希望的偏见和 - 与现有方法相比 - 能够产生高质量的合成数据。此外,我们为发电机的收敛和下游模型的公平提供理论担保。
translated by 谷歌翻译