我们提出了一种新型的深度学习方法,以分类19.Covid-19患者的肺CTS。具体而言,我们将扫描分为健康的肺组织,非肺部区域,以及两个不同但视觉上相似的病理性肺组织,即地面玻璃透明度和巩固。这是通过独特的端到端层次网络架构和整体学习来实现的,这有助于分割并为细分不确定性提供衡量标准。提出的框架为三个Covid-19数据集实现了竞争成果和出色的概括能力。我们的方法在COVID-19 CT图像细分的公共Kaggle竞赛中排名第二。此外,分割不确定性区域显示与两种不同放射科医生的手动注释之间的分歧相对应。最后,在比较患者的COVID-19严重程度评分(基于临床指标)和分割的肺病理时,显示了我们的私人数据集的初步有希望的对应结果。代码和数据可在我们的存储库中找到:https://github.com/talbenha/covid-seg
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3D) pulmonary CT images, which we call it Lung-Net. We conjectured that a significant deeper network with inceptionV3 units can achieve a better feature representation of lung CT images without increasing the model complexity in terms of the number of trainable parameters. The method has three main advantages. First, a U-Net architecture with InceptionV3 blocks is developed to resolve the problem of performance degradation and parameter overload. Then, using information from consecutive slices, a new data structure is created to increase generalization potential, allowing more discriminating features to be extracted by making data representation as efficient as possible. Finally, the robustness of the proposed segmentation framework was quantitatively assessed using one public database to train and test the model (LUNA16) and two public databases (ISBI VESSEL12 challenge and CRPF dataset) only for testing the model; each database consists of 700, 23, and 40 CT images, respectively, that were acquired with a different scanner and protocol. Based on the experimental results, the proposed method achieved competitive results over the existing techniques with Dice coefficient of 99.7, 99.1, and 98.8 for LUNA16, VESSEL12, and CRPF datasets, respectively. For segmenting lung tissue in CT images, the proposed model is efficient in terms of time and parameters and outperforms other state-of-the-art methods. Additionally, this model is publicly accessible via a graphical user interface.
translated by 谷歌翻译
This paper presents our solution for the 2nd COVID-19 Severity Detection Competition. This task aims to distinguish the Mild, Moderate, Severe, and Critical grades in COVID-19 chest CT images. In our approach, we devise a novel infection-aware 3D Contrastive Mixup Classification network for severity grading. Specifcally, we train two segmentation networks to first extract the lung region and then the inner lesion region. The lesion segmentation mask serves as complementary information for the original CT slices. To relieve the issue of imbalanced data distribution, we further improve the advanced Contrastive Mixup Classification network by weighted cross-entropy loss. On the COVID-19 severity detection leaderboard, our approach won the first place with a Macro F1 Score of 51.76%. It significantly outperforms the baseline method by over 11.46%.
translated by 谷歌翻译
本文提出了COVID-19患者肺部肺部感染和正常区域的自动分割方法。从2019年12月起,2019年新型冠状病毒疾病(Covid-19)遍布世界,对我们的经济活动和日常生活产生重大影响。为了诊断大量感染的患者,需要计算机诊断辅助。胸部CT对于诊断病毒性肺炎,包括Covid-19是有效的。 Covid-19的诊断辅助需要从计算机的CT卷的肺部条件的定量分析方法。本文用Covid-19分割完全卷积网络(FCN)提出了来自CT卷中的CT卷中肺部感染和正常区域的自动分割方法。在诊断包括Covid-19的肺部疾病中,肺部正常和感染区域的条件分析很重要。我们的方法识别CT卷中的肺正态和感染区。对于具有各种形状和尺寸的细分感染区域,我们引入了密集的汇集连接并扩张了我们的FCN中的互联网。我们将该方法应用于Covid-19案例的CT卷。从轻度到Covid-19的严重病例,所提出的方法在肺部正确分段正常和感染区域。正常和感染区域的骰子评分分别为0.911和0.753。
translated by 谷歌翻译
背景:患者的分类是控制2019年冠状病毒疾病的大流行病(Covid-19),特别是在临床资源极为有限时在大流行的峰值期间。目的:开发一种用合成胸CT自动筛分和量化肺和肺炎病变的方法,并评估Covid-19患者的疾病严重程度。材料和方法:在本研究中,我们通过可用的数据集(来自“肺结核分析2016年”的285个数据集“来生成数据增强以产生合成胸CT图像。合成图像和掩模用于训练2D U-Net神经网络并在203个Covid-19数据集上测试,以产生肺和病变分段。疾病严重程度评分(DL:损伤负荷; DS:损伤得分)是基于分段计算的。使用Pearson方法评估DL / DS和临床实验室测试之间的相关性。 p值<0.05被认为是统计显着性。结果:将自动肺和病变分段与手动注释进行比较。对于肺部分割,骰子相似系数,Jaccard指数和平均表面距离的中值分别为98.56%,97.15%和0.49 mm。病变分割的相同度量分别为76.95%,62.54%和2.36毫米。在DL / DS和百分比淋巴细胞检测中发现显着(P << 0.05)相关性,R值分别为-0.561和-0.501。结论:基于胸部射线照相和数据增强的AI系统对Covid-19患者的肺癌和病变进行了分段。成像结果与临床实验室测试之间的相关性表明该系统的价值作为评估Covid-19疾病严重程度的潜在工具。
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
Despite high global prevalence of hepatic steatosis, no automated diagnostics demonstrated generalizability in detecting steatosis on multiple international datasets. Traditionally, hepatic steatosis detection relies on clinicians selecting the region of interest (ROI) on computed tomography (CT) to measure liver attenuation. ROI selection demands time and expertise, and therefore is not routinely performed in populations. To automate the process, we validated an existing artificial intelligence (AI) system for 3D liver segmentation and used it to purpose a novel method: AI-ROI, which could automatically select the ROI for attenuation measurements. AI segmentation and AI-ROI method were evaluated on 1,014 non-contrast enhanced chest CT images from eight international datasets: LIDC-IDRI, NSCLC-Lung1, RIDER, VESSEL12, RICORD-1A, RICORD-1B, COVID-19-Italy, and COVID-19-China. AI segmentation achieved a mean dice coefficient of 0.957. Attenuations measured by AI-ROI showed no significant differences (p = 0.545) and a reduction of 71% time compared to expert measurements. The area under the curve (AUC) of the steatosis classification of AI-ROI is 0.921 (95% CI: 0.883 - 0.959). If performed as a routine screening method, our AI protocol could potentially allow early non-invasive, non-pharmacological preventative interventions for hepatic steatosis. 1,014 expert-annotated liver segmentations of patients with hepatic steatosis annotations can be downloaded here: https://drive.google.com/drive/folders/1-g_zJeAaZXYXGqL1OeF6pUjr6KB0igJX.
translated by 谷歌翻译
Covid-19已成为全球大流行,仍然对公众产生严重的健康风险。 CT扫描中肺炎病变的准确和有效的细分对于治疗决策至关重要。我们提出了一种使用循环一致生成的对冲网络(循环GaN)的新型无监督方法,其自动化和加速病变描绘过程。工作流程包括肺体积分割,“合成”健康肺一代,感染和健康的图像减法,以及二元病变面膜创造。首先使用预先训练的U-Net划定肺体积,并作为后续网络的输入。开发了循环GaN,以产生来自受感染的肺图像的合成的“健康”肺CT图像。之后,通过从“受感染的”肺CT图像中减去合成的“健康”肺CT图像来提取肺炎病变。然后将中值过滤器和K-Means聚类应用于轮廓的病变。在两个公共数据集(冠状遗传酶和Radiopedia)上验证了自动分割方法。骰子系数分别达到0.748和0.730,用于冠状遗传酶和RadioPedia数据集。同时,对冠纳卡酶数据集的病变分割性的精度和灵敏度为0.813和0.735,以及用于Radiopedia数据集的0.773和0.726。性能与现有的监督分割网络和以前无监督的特性相当。提出的无监督分割方法在自动Covid-19病变描绘中实现了高精度和效率。分割结果可以作为进一步手动修改的基线和病变诊断的质量保证工具。此外,由于其无人自化的性质,结果不受医师经验的影响,否则对监督方法至关重要。
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
在这项工作中,我们介绍了我们提出的方法,该方法是使用SWIN UNETR和基于U-NET的深神经网络体系结构从CT扫描中分割肺动脉的方法。六个型号,基于SWIN UNETR的三个型号以及基于3D U-NET的三个模型,使用加权平均值来制作最终的分割掩码。我们的团队通过这种方法获得了84.36%的多级骰子得分。我们的工作代码可在以下链接上提供:https://github.com/akansh12/parse2022。这项工作是Miccai Parse 2022挑战的一部分。
translated by 谷歌翻译
本文提出了来自Covid-19患者CT体积的肺部感染区的分段方法。 Covid-19在全球范围内传播,造成许多受感染的患者和死亡。 CT图像的Covid-19诊断可以提供快速准确的诊断结果。肺中感染区的自动分割方法提供了诊断的定量标准。以前的方法采用整个2D图像或基于3D卷的过程。感染区域的尺寸具有相当大的变化。这种过程容易错过小型感染区域。基于补丁的过程对于分割小目标是有效的。然而,在感染区分割中选择适当的贴片尺寸难以。我们利用分段FCN的各种接受场大小之间的规模不确定性以获得感染区域。接收场尺寸可以定义为贴片尺寸和块从斑块的卷的分辨率。本文提出了一种执行基于补丁的分割的感染分段网络(ISNet)和尺度的不确定性感知预测聚合方法,其改进分割结果。我们设计ISNET到具有各种强度值的分段感染区域。 ISNet具有多个编码路径来处理由多个强度范围归一化的修补程序卷。我们收集具有各种接收场尺寸的ISNet产生的预测结果。预测聚合方法提取预测结果之间的规模不确定性。我们使用聚合FCN来在预测之间的规模不确定性来生成精确的分段结果。在我们的实验中,使用199例Covid-19案例,预测聚集方法将骰子相似度评分从47.6%提高到62.1%。
translated by 谷歌翻译
世界目前正在经历持续的传染病大流行病,该传染病是冠状病毒疾病2019(即covid-19),这是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的。计算机断层扫描(CT)在评估感染的严重程度方面发挥着重要作用,并且还可用于识别这些症状和无症状的Covid-19载体。随着Covid-19患者的累积数量的激增,放射科医师越来越强调手动检查CT扫描。因此,自动化3D CT扫描识别工具的需求量高,因为手动分析对放射科医师耗时,并且它们的疲劳可能导致可能的误判。然而,由于位于不同医院的CT扫描仪的各种技术规范,CT图像的外观可能显着不同,导致许多自动图像识别方法的失败。因此,多域和多扫描仪研究的多域移位问题是不可能对可靠识别和可再现和客观诊断和预后至关重要的至关重要。在本文中,我们提出了Covid-19 CT扫描识别模型即Coronavirus信息融合和诊断网络(CIFD-NET),可以通过新的强大弱监督的学习范式有效地处理多域移位问题。与其他最先进的方法相比,我们的模型可以可靠,高效地解决CT扫描图像中不同外观的问题。
translated by 谷歌翻译
逆转录 - 聚合酶链反应(RT-PCR)目前是Covid-19诊断中的金标准。然而,它可以花几天来提供诊断,假负率相对较高。成像,特别是胸部计算断层扫描(CT),可以有助于诊断和评估这种疾病。然而,表明标准剂量CT扫描对患者提供了显着的辐射负担,尤其是需要多次扫描的患者。在这项研究中,我们考虑低剂量和超低剂量(LDCT和ULDCT)扫描方案,其减少靠近单个X射线的辐射曝光,同时保持可接受的分辨率以进行诊断目的。由于胸部放射学专业知识可能不会在大流行期间广泛使用,我们使用LDCT / ULDCT扫描的收集的数据集进行人工智能(AI)基础的框架,以研究AI模型可以提供人为级性能的假设。 AI模型使用了两个阶段胶囊网络架构,可以快速对Covid-19,社区获得的肺炎(帽)和正常情况进行分类,使用LDCT / ULDCT扫描。 AI模型实现Covid-19敏感性为89.5%+ - 0.11,帽敏感性为95%+ \ - 0.11,正常情况敏感性(特异性)85.7%+ - 0.16,精度为90%+ \ - 0.06。通过纳入临床数据(人口统计和症状),性能进一步改善了Covid-19敏感性为94.3%+ \ - PM 0.05,帽敏感性为96.7%+ \ - 0.07,正常情况敏感性(特异性)91%+ - 0.09,精度为94.1%+ \ - 0.03。所提出的AI模型基于降低辐射暴露的LDCT / ULDCT扫描来实现人级诊断。我们认为,所提出的AI模型有可能协助放射科医师准确,并迅速诊断Covid-19感染,并帮助控制大流行期间的传输链。
translated by 谷歌翻译
计算机断层扫描(CT)成像对于诊断各种疾病可能非常实用。但是,CT图像的性质更加多样化,因为CT扫描的分辨率和数量由机器及其设置确定。传统的深度学习模型很难挠痒痒,因为深神经网络的基本要求是输入数据的一致形状。在本文中,我们提出了一种新颖,有效的两步方法,以彻底解决Covid-19症状分类的问题。首先,通过常规骨干网络提取CT扫描的每个切片的语义特征嵌入。然后,我们提出了长期的短期记忆(LSTM)和基于变压器的子网络来处理时间特征学习,从而导致时空特征表示学习。以这种方式,拟议的两步LSTM模型可以防止过度拟合,并提高性能。全面的实验表明,提出的两步方法不仅显示出出色的性能,而且可以互相补偿。更具体地说,两步LSTM模型的假阴性速率较低,而2步SWIN模型的假阳性速率较低。总而言之,建议模型合奏可以在现实世界应用中采用更稳定和有希望的性能。
translated by 谷歌翻译
在过去的两年中,世界遭受了COVID-19(SARS-COV-2)的困扰,造成了人们的日常生活损失和变化。因此,使用深度学习对胸部计算机断层扫描(CT)扫描进行了深入学习的自动检测变得很有希望,这有助于有效纠正诊断。最近,提出了基于变压器的COVID-19检测方法,以利用CT体积中的3D信息。但是,其选择切片的采样方法并不是最佳的。为了利用CT体积中的丰富3D信息,我们使用新型的数据策展和适应性采样方法提出了基于变压器的COVID-19检测,并使用灰度级别同时出现矩阵(GLCM)。为了训练由CNN层组成的模型,然后是变压器体系结构,我们首先基于肺部分割执行数据策划,并利用CT卷中每个切片的GLCM值的熵来为预测选择重要切片。实验结果表明,所提出的方法以较大的边缘改善了检测性能,而没有对模型进行太多修改。
translated by 谷歌翻译
新的SARS-COV-2大流行病也被称为Covid-19一直在全世界蔓延,导致生活猖獗。诸如CT,X射线等的医学成像在通过呈现器官功能的视觉表示来诊断患者时起着重要作用。然而,对于任何分析这种扫描的放射科学家是一种乏味且耗时的任务。新兴的深度学习技术展示了它的优势,在分析诸如Covid-19等疾病和病毒的速度更快的诊断中有助于帮助。在本文中,提出了一种基于自动化的基于深度学习的模型CoVID-19层级分割网络(CHS-Net),其用作语义层次分段器,以通过使用两个级联的CT医学成像来识别来自肺轮廓的Covid-19受感染的区域剩余注意力撤销U-NET(RAIU-Net)模型。 Raiu-net包括具有频谱空间和深度关注网络(SSD)的剩余成立U-Net模型,该网络(SSD)是由深度可分离卷积和混合池(MAX和频谱池)的收缩和扩展阶段开发的,以有效地编码和解码语义和不同的分辨率信息。 CHS-NET接受了分割损失函数的培训,该损失函数是二进制交叉熵损失和骰子损失的平均值,以惩罚假阴性和假阳性预测。将该方法与最近提出的方法进行比较,并使用标准度量评估,如准确性,精度,特异性,召回,骰子系数和jaccard相似度以及与Gradcam ++和不确定性地图的模型预测的可视化解释。随着广泛的试验,观察到所提出的方法优于最近提出的方法,并有效地将Covid-19受感染的地区进行肺部。
translated by 谷歌翻译
Accurate airway extraction from computed tomography (CT) images is a critical step for planning navigation bronchoscopy and quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). The existing methods are challenging to sufficiently segment the airway, especially the high-generation airway, with the constraint of the limited label and cannot meet the clinical use in COPD. We propose a novel two-stage 3D contextual transformer-based U-Net for airway segmentation using CT images. The method consists of two stages, performing initial and refined airway segmentation. The two-stage model shares the same subnetwork with different airway masks as input. Contextual transformer block is performed both in the encoder and decoder path of the subnetwork to finish high-quality airway segmentation effectively. In the first stage, the total airway mask and CT images are provided to the subnetwork, and the intrapulmonary airway mask and corresponding CT scans to the subnetwork in the second stage. Then the predictions of the two-stage method are merged as the final prediction. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analysis demonstrate that our proposed method extracted much more branches and lengths of the tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
translated by 谷歌翻译
这项研究的目的是开发一个强大的基于深度学习的框架,以区分Covid-19,社区获得的肺炎(CAP)和基于使用各种方案和放射剂量在不同成像中心获得的胸部CT扫描的正常病例和正常情况。我们表明,虽然我们的建议模型是在使用特定扫描协议仅从一个成像中心获取的相对较小的数据集上训练的,但该模型在使用不同技术参数的多个扫描仪获得的异质测试集上表现良好。我们还表明,可以通过无监督的方法来更新模型,以应对火车和测试集之间的数据移动,并在从其他中心接收新的外部数据集时增强模型的鲁棒性。我们采用了合奏体系结构来汇总该模型的多个版本的预测。为了初始培训和开发目的,使用了171 Covid-19、60 CAP和76个正常情况的内部数据集,其中包含使用恒定的标准辐射剂量扫描方案从一个成像中心获得的体积CT扫描。为了评估模型,我们回顾了四个不同的测试集,以研究数据特征对模型性能的转移的影响。在测试用例中,有与火车组相似的CT扫描,以及嘈杂的低剂量和超低剂量CT扫描。此外,从患有心血管疾病或手术病史的患者中获得了一些测试CT扫描。这项研究中使用的整个测试数据集包含51 covid-19、28 CAP和51例正常情况。实验结果表明,我们提出的框架在所有测试集上的表现良好,达到96.15%的总准确度(95%CI:[91.25-98.74]),COVID-119,COVID-96.08%(95%CI:[86.54-99.5],95%),[86.54-99.5],),,),敏感性。帽敏感性为92.86%(95%CI:[76.50-99.19])。
translated by 谷歌翻译
多模式性荧光脱氧葡萄糖(FDG)正电子发射断层扫描 /计算机断层扫描(PET / CT)已常规用于评估常见癌症,例如肺癌,淋巴瘤和黑色素瘤。这主要归因于以下事实:PET/CT结合了对PET肿瘤检测的高灵敏度和CT的解剖学信息。在PET/CT图像评估中,自动肿瘤分割是重要的一步,近年来,基于深度学习的方法已成为最新方法。不幸的是,现有的方法倾向于过度细分肿瘤区域,并包括正常摄取器官,炎症和其他感染等区域。在这项研究中,我们引入了一个假阳性还原网络以克服这一限制。我们首先引入了一个自制的预训练的全球分割模块,以使用自我监督的预训练的编码器粗糙地描绘候选肿瘤区域。然后,通过局部细化模块去除假阳性来完善候选肿瘤区域。我们对MICCAI 2022自动病变分割的实验在全身FDG-PET/CT(AUTOPET)挑战数据集中表明,我们的方法在初步测试数据中获得了0.9324的骰子得分,并在排行榜上排名第一。我们的方法在最终测试数据的前7位方法中也排名,最终排名将在2022 MICCAI AUTOPET研讨会期间宣布。我们的代码可在以下网址提供:https://github.com/yigepeng/autopet_false_posisity_reduction。
translated by 谷歌翻译