X-Ray Polarimetry很快将在高能量宇宙中打开一个新窗口,并推出NASA的成像X射线偏光型资源管理器(IXPE)。偏振仪目前受到其轨道重建算法的限制,通常使用线性估计,并不考虑单个事件质量。我们介绍了一种最大限度的深度学习方法,可实现与成像偏振仪的X射线伸缩观测的灵敏度,重点在IXPE上捕获气体像素探测器(GPD)。我们使用从Resnet的深度集合的预测的加权最大可能性组合,训练在Monte Carlo事件模拟上。我们得出并应用最佳事件加权,以便最大化轨道重建算法中的偏振信噪比(SNR)。对于典型的电力法源光谱,我们的方法改进了本领域的当前状态,为给定SNR提供了〜40%的曝光时间减少。
translated by 谷歌翻译
估计不确定性是进行HEP中科学测量的核心:如果没有估计其不确定性,测量是无用的。不确定性量化(UQ)的目的是与这个问题密不可分的:“我们如何在身体和统计上解释这些不确定性?”这个问题的答案不仅取决于我们要执行的计算任务,还取决于我们用于该任务的方法。对于HEP中的人工智能(AI)应用,在几个领域中,可解释的UQ方法至关重要,包括推理,仿真和控制/决策。这些领域中的每个领域都有一些方法,但尚未被证明像当前在物理学中使用的更传统的方法一样值得信赖(例如,非AI经常主义者和贝叶斯方法)。阐明上面的问题需要更多地了解AI系统的相互作用和不确定性量化。我们简要讨论每个领域的现有方法,并将其与HEP跨越的任务联系起来。然后,我们讨论了途径的建议,以开发必要的技术,以在接下来的十年中可靠地使用AI与UQ使用。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
快速,高度准确,可靠的引力波浪的推动,可以实现实时多信使天文学。目前贝叶斯推理方法虽然高度准确可靠,但很慢。深度学习模型已经表明了引力波的推理任务非常快速,但由于神经网络的黑箱性质,它们的产出本质上是可疑的。在这项工作中,我们通过应用了多头卷积神经网络产生的近似后验的重要性抽样加入贝叶斯推论和深度学习。神经网络参数化Von Mises-Fisher和天空坐标和高斯分布的天空坐标和两个群众,用于给定Ligo和Virgo探测器的模拟重力波注射。我们为看不见的引力波事件产生跨ysmaps,这是几分钟内使用贝叶斯推理产生的高等类似的预测。此外,我们可以检测神经网络的差,并迅速向它们标记。
translated by 谷歌翻译
深度集合可以被视为最新的深度学习中不确定性量化的最先进的定量。虽然最初提出了该方法作为非贝叶斯技术,但支持其贝叶斯基础的论据也提出。我们表明,通过指定相应的假设,可以将深度集合视为近似贝叶斯方法。我们的研究结果导致改善的近似,导致不确定性的扩大的认识部分。数值示例表明改进的近似可能导致更可靠的不确定性。分析衍生确保易于计算结果。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们有兴趣估计深神经网络的不确定性,这些神经网络在许多科学和工程问题中起着重要作用。在本文中,我们提出了一个引人注目的新发现,即具有相同权重初始化的神经网络的合奏,在数据集中受到持续偏差的转移而训练会产生稍微不一致的训练模型,其中预测的差异是强大的指标。认知不确定性。使用神经切线核(NTK),我们证明了这种现象是由于NTK不变的部分而发生的。由于这是通过微不足道的输入转换来实现的,因此我们表明可以使用单个神经网络(使用我们称为$ \ delta- $ uq的技术)来近似它,从而通过边缘化效果来估计预测周围的不确定性偏见。我们表明,$ \ delta- $ uq的不确定性估计值优于各种基准测试的当前方法 - 异常拒绝,分配变化下的校准以及黑匣子功能的顺序设计优化。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
神经线性模型(NLM)是深度贝叶斯模型,通过从数据中学习特征,然后对这些特征进行贝叶斯线性回归来产生预测的不确定性。尽管他们受欢迎,但很少有作品专注于有条理地评估这些模型的预测性不确定性。在这项工作中,我们证明了NLMS的传统培训程序急剧低估了分发输入的不确定性,因此它们不能在风险敏感的应用中暂时部署。我们确定了这种行为的基本原因,并提出了一种新的培训框架,捕获下游任务的有用预测不确定性。
translated by 谷歌翻译
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
translated by 谷歌翻译
非常希望知道模型的预测是多么不确定,特别是对于复杂的模型和难以理解的模型,如深度学习。虽然在扩散加权MRI中使用深度学习方法,但事先作品没有解决模型不确定性的问题。在这里,我们提出了一种深入的学习方法来估计扩散张量并计算估计不确定性。数据相关的不确定性由网络直接计算,并通过损耗衰减学习。使用Monte Carlo辍学来计算模型不确定性。我们还提出了一种评估预测不确定性的质量的新方法。我们将新方法与标准最小二乘张量估计和基于引导的不确定性计算技术进行比较。我们的实验表明,当测量数量小时,深度学习方法更准确,并且其不确定性预测比标准方法更好地校准。我们表明,新方法计算的估计不确定性可以突出显示模型的偏置,检测域移位,并反映测量中的噪声强度。我们的研究表明了基于深度学习的扩散MRI分析中建模预测不确定性的重要性和实际价值。
translated by 谷歌翻译
美国宇航局的全球生态系统动力学调查(GEDI)是一个关键的气候使命,其目标是推进我们对森林在全球碳循环中的作用的理解。虽然GEDI是第一个基于空间的激光器,明确优化,以测量地上生物质的垂直森林结构预测,这对广泛的观测和环境条件的大量波形数据的准确解释是具有挑战性的。在这里,我们提出了一种新颖的监督机器学习方法来解释GEDI波形和全球标注冠层顶部高度。我们提出了一种基于深度卷积神经网络(CNN)集合的概率深度学习方法,以避免未知效果的显式建模,例如大气噪声。该模型学会提取概括地理区域的强大特征,此外,产生可靠的预测性不确定性估计。最终,我们模型产生的全球顶棚顶部高度估计估计的预期RMSE为2.7米,低偏差。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
人工神经网络无法评估其预测的不确定性是对它们广泛使用的障碍。我们区分了两种类型的可学习不确定性:由于缺乏训练数据和噪声引起的观察不确定性而导致的模型不确定性。贝叶斯神经网络使用坚实的数学基础来学习其预测的模型不确定性。观察不确定性可以通过在这些网络中添加一层并增强其损失功能来计算观察不确定性。我们的贡献是将这些不确定性概念应用于预测过程监控任务中,以训练基于不确定性的模型以预测剩余时间和结果。我们的实验表明,不确定性估计值允许分化更多和不准确的预测,并在回归和分类任务中构建置信区间。即使在运行过程的早期阶段,这些结论仍然是正确的。此外,部署的技术是快速的,并产生了更准确的预测。学习的不确定性可以增加用户对其流程预测系统的信心,促进人类与这些系统之间的更好合作,并通过较小的数据集实现早期的实施。
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译