在线广告中,自动竞标已成为广告商通过简单地表达高级活动目标和约束来优化其首选广告性能指标的重要工具。以前的作品从单个代理的视图中设计了自动竞争工具,而不会在代理之间建模相互影响。在本文中,我们从分布式多功能代理人的角度来看,请考虑这个问题,并提出一个常规$ \强调{m} $ ulti - $ \强调{a} $ gent加强学习框架,以便为$ clown {a} $ uto - $ \ Underline {b} $ IDDIND,即MAAB,了解自动竞标策略。首先,我们调查自动招标代理商之间的竞争与合作关系,并提出了一个温度定期的信用分配,以建立混合合作竞争范式。通过在代理商中仔细开展竞争和合作权衡,我们可以达到均衡状态,不仅担保个人广告商的实用程序,而且保证了系统性能(即社会福利)。其次,为避免竞争低价潜在勾结行为的合作,我们进一步提交了律师代理,为每位专家设定个性化招标酒吧,然后减轻由于合作而导致的收入退化。第三,要在大型广告系统中部署MAAB,我们提出了一种平均现场方法。通过将具有与平均自动竞标代理商相同的广告商进行分组,大规模广告商之间的互动大大简化,使得培训MAAB有效地培训。在离线工业数据集和阿里巴巴广告平台上进行了广泛的实验表明,我们的方法在社会福利和收入方面优于几种基线方法。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has made prominent progress in recent years. For training efficiency and scalability, most of the MARL algorithms make all agents share the same policy or value network. However, in many complex multi-agent tasks, different agents are expected to possess specific abilities to handle different subtasks. In those scenarios, sharing parameters indiscriminately may lead to similar behavior across all agents, which will limit the exploration efficiency and degrade the final performance. To balance the training complexity and the diversity of agent behavior, we propose a novel framework to learn dynamic subtask assignment (LDSA) in cooperative MARL. Specifically, we first introduce a subtask encoder to construct a vector representation for each subtask according to its identity. To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy, which can dynamically group agents with similar abilities into the same subtask. In this way, agents dealing with the same subtask share their learning of specific abilities and different subtasks correspond to different specific abilities. We further introduce two regularizers to increase the representation difference between subtasks and stabilize the training by discouraging agents from frequently changing subtasks, respectively. Empirical results show that LDSA learns reasonable and effective subtask assignment for better collaboration and significantly improves the learning performance on the challenging StarCraft II micromanagement benchmark and Google Research Football.
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译
Recently, some challenging tasks in multi-agent systems have been solved by some hierarchical reinforcement learning methods. Inspired by the intra-level and inter-level coordination in the human nervous system, we propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for fully cooperative multi-agent problems. To address the instability arising from the concurrent optimization of policies between various levels and agents, we introduce the dual coordination mechanism of inter-level and inter-agent strategies by designing reward functions in a two-level hierarchy. HAVEN does not require domain knowledge and pre-training, and can be applied to any value decomposition variant. Our method achieves desirable results on different decentralized partially observable Markov decision process domains and outperforms other popular multi-agent hierarchical reinforcement learning algorithms.
translated by 谷歌翻译
在本文中,我们研究了网络多功能增强学习(MARL)的问题,其中许多代理被部署为部分连接的网络,并且每个代理只与附近的代理交互。网络Marl要求所有代理商以分散的方式作出决定,以优化具有网络之间邻居之间的限制通信的全局目标。受到事实的启发,即\ yexit {分享}在人类合作中发挥关键作用,我们提出了一个分层分散的MARL框架,使代理商能够学会与邻居动态共享奖励,以便鼓励代理商在全球合作客观的。对于每个代理,高级策略了解如何与邻居分析奖励以分解全局目标,而低级策略则会学会优化由邻域的高级策略引起的本地目标。两项政策形成双级优化,交替学习。我们经验证明LTOS在社交困境和网络MARL情景中表明现有的现有方法。
translated by 谷歌翻译
本文调查了具有不平等专业知识的组织之间竞争的动态。多智能体增强学习已被用来模拟和理解各种激励方案的影响,旨在抵消这种不等式。我们设计触摸标记,基于众所周知的多助手粒子环境的游戏,其中两支球队(弱,强),不平等但不断变化的技能水平相互竞争。对于培训此类游戏,我们提出了一种新颖的控制器辅助多智能体增强学习算法\我们的\,它使每个代理商携带策略的集合以及通过选择性地分区示例空间,触发智能角色划分队友。使用C-MADDPG作为潜在的框架,我们向弱小的团队提出了激励计划,使两队的最终奖励成为同一个。我们发现尽管激动人心,但弱小队的最终奖励仍然缺乏强大的团​​队。在检查中,我们意识到弱小球队的整体激励计划并未激励该团队中的较弱代理来学习和改进。要抵消这一点,我们现在特别激励了较弱的球员学习,因此,观察到超越初始阶段的弱小球队与更强大的团队表现。本文的最终目标是制定一种动态激励计划,不断平衡两支球队的奖励。这是通过设计富有奖励的激励计划来实现的,该计划从环境中取出最低信息。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
In many real-world settings, a team of agents must coordinate their behaviour while acting in a decentralised way. At the same time, it is often possible to train the agents in a centralised fashion in a simulated or laboratory setting, where global state information is available and communication constraints are lifted. Learning joint actionvalues conditioned on extra state information is an attractive way to exploit centralised learning, but the best strategy for then extracting decentralised policies is unclear. Our solution is QMIX, a novel value-based method that can train decentralised policies in a centralised end-to-end fashion. QMIX employs a network that estimates joint action-values as a complex non-linear combination of per-agent values that condition only on local observations. We structurally enforce that the joint-action value is monotonic in the per-agent values, which allows tractable maximisation of the joint action-value in off-policy learning, and guarantees consistency between the centralised and decentralised policies. We evaluate QMIX on a challenging set of StarCraft II micromanagement tasks, and show that QMIX significantly outperforms existing value-based multi-agent reinforcement learning methods.
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
在本文中,我们认为合作的多代理强化学习(MARL)具有稀疏的奖励。为了解决这个问题,我们提出了一种名为Maser:MARL的新方法,并具有从经验重播缓冲区产生的子目标。在广泛使用的集中式培训的假设下,通过分散执行和对MARL的Q值分解的一致性,Maser通过考虑单个Q值和总Q值来自动为多个代理人生成适当的子目标。然后,Maser根据与Q学习相关的可行表示为每个代理设计个人固有奖励,以便代理人达到其子目标,同时最大化联合行动值。数值结果表明,与其他最先进的MARL算法相比,Maser的表现明显优于Starcraft II微管理基准。
translated by 谷歌翻译
我们呈现协调的近端策略优化(COPPO),该算法将原始近端策略优化(PPO)扩展到多功能代理设置。关键的想法在于多个代理之间的策略更新过程中的步骤大小的协调适应。当优化理论上接地的联合目标时,我们证明了政策改进的单调性,并基于一组近似推导了简化的优化目标。然后,我们解释了Coppo中的这种目标可以在代理商之间实现动态信用分配,从而减轻了代理政策的同时更新期间的高方差问题。最后,我们证明COPPO优于几种强大的基线,并且在典型的多代理设置下,包括最新的多代理PPO方法(即MAPPO),包括合作矩阵游戏和星际争霸II微管理任务。
translated by 谷歌翻译
多代理深度增强学习(Marl)缺乏缺乏共同使用的评估任务和标准,使方法之间的比较困难。在这项工作中,我们提供了一个系统评估,并比较了三种不同类别的Marl算法(独立学习,集中式多代理政策梯度,价值分解)在各种协作多智能经纪人学习任务中。我们的实验是在不同学习任务中作为算法的预期性能的参考,我们为不同学习方法的有效性提供了见解。我们开源EPYMARL,它将Pymarl CodeBase扩展到包括其他算法,并允许灵活地配置算法实现细节,例如参数共享。最后,我们开源两种环境,用于多智能经纪研究,重点关注稀疏奖励下的协调。
translated by 谷歌翻译
实际经济体可以被视为一种顺序不完美信息游戏,具有许多异质,互动的各种代理类型的战略代理,例如消费者,公司和政府。动态一般均衡模型是在此类系统中建模经济活动,交互和结果的普通经济工具。然而,当所有代理商是战略和互动时,现有的分析和计算方法努力寻找明确的均衡,而联合学习是不稳定的并且具有挑战性。在其他人中,一个重要的原因是,一个经济代理人的行动可能会改变另一名代理人的奖励职能,例如,当公司更改价格或政府更改税收时,消费者的消费者的消费收入变化。我们表明,多代理深度加强学习(RL)可以发现稳定的解决方案,即通过使用结构的学习课程和高效的GPU,在经济模拟中,在经济仿真中,在经济模拟中,可以发现普遍存器类型的稳定解决方案。仿真和培训。概念上,我们的方法更加灵活,不需要不切实际的假设,例如市场清算,通常用于分析途径。我们的GPU实施使得能够在合理的时间范围内具有大量代理的经济体,例如,在一天内完成培训。我们展示了我们在实际商业周期模型中的方法,这是一个代表性的DGE模型系列,100名工人消费者,10家公司和政府税收和重新分配。我们通过近似最佳响应分析验证了学习的Meta-Game epsilon-Nash均衡,表明RL政策与经济直觉保持一致,我们的方法是建设性的,例如,通过明确地学习Meta-Game epsilon-Nash ePhilia的频谱打开RBC型号。
translated by 谷歌翻译
多机构增强学习(MARL)已成为解决分散决策问题的有用方法。近年来提出的许多突破性算法一直在稳步增长。在这项工作中,我们仔细研究了这一快速发展,重点是在合作Marl的大量研究中采用的评估方法。通过对先前工作进行详细的荟萃分析,涵盖了从2016年至2022年接受出版的75篇论文,我们引起了人们对真正进步率的质疑的令人担忧的趋势。我们在更广泛的背景下进一步考虑了这些趋势,并从单一AGENT RL文献中获得了有关类似问题的灵感,这些建议以及仍然适用于MARL的建议。将这些建议与我们分析的新见解相结合,我们提出了合作MARL的标准化绩效评估方案。我们认为,这样的标准协议,如果被广泛采用,将大大提高未来研究的有效性和信誉,使复制和可重复性更加容易,并提高该领域的能力,通过能够通过能够准确评估进度的速度进行跨不同作品的合理比较。最后,我们在我们的项目网站上公开发布荟萃分析数据,以供未来的评估研究:https://sites.google.com/view/marl-andard-protocol
translated by 谷歌翻译
平均场理论提供了一种将多基强化学习算法扩展到许多代理可以由虚拟均值代理提取的环境的有效方法。在本文中,我们将平均字段多基因算法扩展到多种类型。这种类型使平均田间强化学习中的核心假设可以放松,即环境中的所有代理都在采用几乎相似的策略,并且具有相同的目标。我们基于标准的魔法框架,对许多代理增强学习领域的三个不同测试床进行实验。我们考虑两种不同类型的平均场环境:a)代理属于预定义类型的游戏,这些类型是先验和b)每个代理的类型未知的游戏,因此必须根据观察结果学习。我们为每种类型的游戏介绍了新的算法,并演示了它们优于最先进的算法,这些算法假定所有代理都属于Magent Framework中的所有代理属于相同类型和其他基线算法。
translated by 谷歌翻译
Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstandingly well on many games of the set, but very poorly in several of the most challenging games. We propose Agent57, the first deep RL agent that outperforms the standard human benchmark on all 57 Atari games. To achieve this result, we train a neural network which parameterizes a family of policies ranging from very exploratory to purely exploitative. We propose an adaptive mechanism to choose which policy to prioritize throughout the training process. Additionally, we utilize a novel parameterization of the architecture that allows for more consistent and stable learning.
translated by 谷歌翻译
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multiagent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译