High-dimensional data arises in numerous applications, and the rapidly developing field of geometric deep learning seeks to develop neural network architectures to analyze such data in non-Euclidean domains, such as graphs and manifolds. Recent work by Z. Wang, L. Ruiz, and A. Ribeiro has introduced a method for constructing manifold neural networks using the spectral decomposition of the Laplace Beltrami operator. Moreover, in this work, the authors provide a numerical scheme for implementing such neural networks when the manifold is unknown and one only has access to finitely many sample points. The authors show that this scheme, which relies upon building a data-driven graph, converges to the continuum limit as the number of sample points tends to infinity. Here, we build upon this result by establishing a rate of convergence that depends on the intrinsic dimension of the manifold but is independent of the ambient dimension. We also discuss how the rate of convergence depends on the depth of the network and the number of filters used in each layer.
translated by 谷歌翻译
散射变换是一种基于小波的多层转换,最初是作为卷积神经网络(CNN)的模型引入的,它在我们对这些网络稳定性和不变性属性的理解中发挥了基础作用。随后,人们普遍兴趣将CNN的成功扩展到具有非欧盟结构的数据集,例如图形和歧管,从而导致了几何深度学习的新兴领域。为了提高我们对这个新领域中使用的体系结构的理解,几篇论文提出了对非欧几里得数据结构(如无方向的图形和紧凑的Riemannian歧管)的散射转换的概括。在本文中,我们介绍了一个通用的统一模型,用于测量空间上的几何散射。我们提出的框架包括以前的几何散射作品作为特殊情况,但也适用于更通用的设置,例如有向图,签名图和带边界的歧管。我们提出了一个新标准,该标准可以识别哪些有用表示应该不变的组,并表明该标准足以确保散射变换具有理想的稳定性和不变性属性。此外,我们考虑从随机采样未知歧管获得的有限度量空间。我们提出了两种构造数据驱动图的方法,在该图上相关的图形散射转换近似于基础歧管上的散射变换。此外,我们使用基于扩散图的方法来证明这些近似值之一的收敛速率的定量估计值,因为样品点的数量趋向于无穷大。最后,我们在球形图像,有向图和高维单细胞数据上展示了方法的实用性。
translated by 谷歌翻译
我们研究光谱图卷积神经网络(GCNN),其中过滤器被定义为通过功能计算的图形移位算子(GSO)的连续函数。光谱GCNN不是针对一个特定图的量身定制的,可以在不同的图之间传输。因此,研究GCNN的可传递性很重要:网络在代表相同现象的不同图上具有大致相同影响的能力。如果测试集中的图与训练集中的图形相同,则可传递性可确保在某些图上进行训练的GCNN概括。在本文中,我们考虑了基于Graphon分析的可转让性模型。图形是图形的极限对象,在图形范式中,如果两者都近似相同的图形,则两个图表示相同的现象。我们的主要贡献可以总结如下:1)我们证明,在近似于同一图形的图的图下,任何具有连续过滤器的固定GCNN都是可以转移的,2)我们证明了近似于未结合的图形换档运算符的图形,该图是在本文中定义的,和3)我们获得了非反应近似结果,证明了GCNN的线性稳定性。这扩展了当前的最新结果,这些结果显示了在近似界图子的图下显示多项式过滤器的渐近可传递性。
translated by 谷歌翻译
歧管散射变换是用于在Riemannian歧管上定义的数据的深度提取器。它是将类似卷积神经网络的操作员扩展到一般流形的第一个例子之一。该模型的初始工作主要集中在其理论稳定性和不变性属性上,但没有为其数值实现提供方法,除非具有预定义的网格的二维表面。在这项工作中,我们根据扩散图的理论提出实用方案,以实现在自然主义系统(例如单细胞遗传学)中产生的流形散射转换,其中数据是一个高度点云,该云是模仿躺在上面的高维点云。低维歧管。我们证明我们的方法对于信号分类和多种分类任务有效。
translated by 谷歌翻译
散射变换是一种基于多层的小波的深度学习架构,其充当卷积神经网络的模型。最近,几种作品引入了非欧几里德设置的散射变换的概括,例如图形。我们的工作通过基于非常一般的非对称小波来引入图形的窗口和非窗口几何散射变换来构建这些结构。我们表明,这些不对称的图形散射变换具有许多与其对称对应的相同的理论保证。结果,所提出的结构统一并扩展了许多现有图散射架构的已知理论结果。在这样做时,这项工作有助于通过引入具有可提供稳定性和不变性保证的大型网络,帮助弥合几何散射和其他图形神经网络之间的差距。这些结果为未来的图形结构数据奠定了基础,对具有学习过滤器的图形结构数据,并且还可以证明具有理想的理论特性。
translated by 谷歌翻译
我们基于拉普拉斯 - 贝特拉米操作员的图形laplacian估计值介绍了紧凑型riemannian歧管M中距离的估计量。我们在非歧管距离上的估计量比的比率上限,或者在非交通性几何形状中的歧管距离的近似值(参见[Connes and Suijelekom,2020]),就光谱误差而言))。图形拉普拉斯(Laplacian)的估计值和隐含的歧管几何特性。因此,我们为从M和图拉普拉奇人的严格正密度等分的样品获得估计器的一致性结果,这些样品从M和图形laplacians上的频谱从适当的意义上汇聚到Laplace-Beltrami操作员。估计器类似于其收敛性能,它源自kontorovic双重重新印度的特殊情况,称为Connes的距离公式。
translated by 谷歌翻译
当图形亲和力矩阵是由$ n $随机样品构建的,在$ d $ d $维歧管上构建图形亲和力矩阵时,这项工作研究图形拉普拉斯元素与拉普拉斯 - 贝特拉米操作员的光谱收敛。通过分析DIRICHLET形成融合并通过歧管加热核卷积构建候选本本函数,我们证明,使用高斯内核,可以设置核band band band band parame $ \ epsilon \ sim \ sim(\ log n/ n/ n)^{1/(D /2+2)} $使得特征值收敛率为$ n^{ - 1/(d/2+2)} $,并且2-norm中的特征向量收敛率$ n^{ - 1/(d+) 4)} $;当$ \ epsilon \ sim(\ log n/n)^{1/(d/2+3)} $时,eigenValue和eigenVector速率均为$ n^{ - 1/(d/2+3)} $。这些费率最高为$ \ log n $因素,并被证明是有限的许多低洼特征值。当数据在歧管上均匀采样以及密度校正的图laplacian(在两个边的度矩阵中归一化)时,结果适用于非归一化和随机漫步图拉普拉斯laplacians laplacians laplacians以及密度校正的图laplacian(其中两侧的级别矩阵)采样数据。作为中间结果,我们证明了密度校正图拉普拉斯的新点和差异形式的收敛速率。提供数值结果以验证理论。
translated by 谷歌翻译
我们使用运输公制(Delon和Desolneux 2020)中的单变量高斯混合物中的任意度量空间$ \ MATHCAL {X} $研究数据表示。我们得出了由称为\ emph {Probabilistic Transfersers}的小神经网络实现的特征图的保证。我们的保证是记忆类型:我们证明了深度约为$ n \ log(n)$的概率变压器和大约$ n^2 $ can bi-h \'{o} lder嵌入任何$ n $ - 点数据集从低度量失真的$ \ Mathcal {x} $,从而避免了维数的诅咒。我们进一步得出了概率的bi-lipschitz保证,可以兑换失真量和随机选择的点与该失真的随机选择点的可能性。如果$ \ MATHCAL {X} $的几何形状足够规律,那么我们可以为数据集中的所有点获得更强的Bi-Lipschitz保证。作为应用程序,我们从Riemannian歧管,指标和某些类型的数据集中获得了神经嵌入保证金组合图。
translated by 谷歌翻译
图形神经网络(GNNS)是由图形卷积和叉指非线性组成的层组成的深度卷积架构。由于其不变性和稳定性属性,GNN在网络数据的学习陈述中被证明是成功的。但是,训练它们需要矩阵计算,这对于大图可能是昂贵的。为了解决这个限制,我们研究了GNN横跨图形转移的能力。我们考虑图形,这是加权和随机图形的图形限制和生成模型,以定义图形卷积和GNNS - Graphon卷曲和Graphon神经网络(WNNS)的限制对象 - 我们用作图形卷曲的生成模型和GNNS。我们表明,这些石墨源区和WNN可以通过图形滤波器和来自加权和随机图中的它们采样的GNN来近似。使用这些结果,我们将导出误差界限,用于跨越此类图形传输图形过滤器和GNN。这些界限表明,可转换性随着图尺寸的增加而增加,并且揭示了在GNN中的可转换性和光谱分辨率之间的折衷,其被点亮的非线性缓解。这些发现经验在电影推荐和分散机器人控制中的数值实验中进行了经验验证。
translated by 谷歌翻译
内元化图亲和力矩阵的双性化归一化为基于图的数据分析中的图形laplacian方法提供了一种替代归一化方案,并且可以通过sinkhorn-knopp(SK)迭代在实践中有效地计算出来。本文证明了双性化标准化图拉普拉斯(Laplacian)与laplacian的融合,当$ n $数据点为i.i.d.从嵌入可能高维空间中的一般$ d $维歧管中取样。在$ n \ to \ infty $和内核带宽$ \ epsilon \ to 0 $的某些联合限制下,图Laplacian操作员的点融合率(2-Norm)被证明为$ O(N^{n^{ -1/(d/2+3)})$在有限的大$ n $上,到log racture,在$ \ epsilon \ sim n^{ - 1/(d/2+3)} $时实现。当歧管数据被异常噪声损坏时,我们从理论上证明了图形laplacian点的一致性,该图与清洁歧管数据的速率匹配到与噪声矢量相互内部产物的界限成比例的附加错误项。我们的分析表明,在本文中考虑的设置下,不是精确的双性化归一化,而是大约将达到相同的一致性率。在分析的激励下,我们提出了一个近似且受约束的矩阵缩放问题,可以通过早期终止的SK迭代来解决,并适用于模拟的歧管数据既干净又具有离群的噪声。数值实验支持我们的理论结果,并显示了双形式归一化图拉普拉斯对异常噪声的鲁棒性。
translated by 谷歌翻译
无限尺寸空间之间的学习运营商是机器学习,成像科学,数学建模和仿真等广泛应用中出现的重要学习任务。本文研究了利用深神经网络的Lipschitz运营商的非参数估计。 Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class.在假设目标操作员表现出低维结构的情况下,由于训练样本大小增加,我们的误差界限衰减,根据我们估计中的内在尺寸,具有吸引力的快速速度。我们的假设涵盖了实际应用中的大多数情况,我们的结果通过利用操作员估算中的低维结构来产生快速速率。我们还研究了网络结构(例如,网络宽度,深度和稀疏性)对神经网络估计器的泛化误差的影响,并提出了对网络结构的选择来定量地最大化学习效率的一般建议。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
在过去的十年中,神经网络在各种各样的反问题中取得了显着的成功,从医学成像到地震分析等学科中的采用促进了他们的收养。但是,这种反问题的高维度同时使当前理论预测,网络应在问题的维度上成倍扩展,无法解释为什么在这些设置中使用的看似很小的网络在实践中也可以正常工作。为了减少理论和实践之间的差距,在本文中提供了一种在具有低复杂性结构的高维置的神经网络近似Lipschitz函数所需的复杂性的一般方法。该方法基于这样的观察,即在\ mathbb {r}^in \ mathbb {r}^{d \ times d} $ in \ mathbb {a} \ in \ mathbb {a} \ in \ mathcal集合$ \ mathcal {S } \ subset \ mathbb {r}^d $中的低维立方体$ [ - m,m]^d $意味着对于任何Lipschitz函数$ f:\ mathcal {s} \ to \ mathbb {r}^p $ ,存在lipschitz函数$ g:[-m,m]^d \ to \ mathbb {r}^p $,使得$ g(\ mathbf {a} \ mathbf {x})= f(\ mathbf {x })$用于所有$ \ mathbf {x} \ in \ mathcal {s} $。因此,如果一个人具有一个近似$ g的神经网络:[-m,m]^d \ to \ mathbb {r}^p $,则可以添加一个图层,以实现JL嵌入$ \ mathbf {A a} $要获得一个近似于$ f的神经网络:\ mathcal {s} \ to \ mathbb {r}^p $。通过将JL嵌入结果与神经网络近似Lipschitz函数的近似结果配对,然后获得了一个结果,这些结果绑定了神经网络所需的复杂性,以近似Lipschitz在高尺寸集合上的功能。最终结果是一个一般的理论框架,然后可以用它来更好地解释比当前理论所允许的更广泛的逆问题中较小的网络的经验成功。
translated by 谷歌翻译
本文提出了一个无网格的计算框架和机器学习理论,用于在未知的歧管上求解椭圆形PDE,并根据扩散地图(DM)和深度学习确定点云。 PDE求解器是作为监督的学习任务制定的,以解决最小二乘回归问题,该问题施加了近似PDE的代数方程(如果适用)。该代数方程涉及通过DM渐近扩展获得的图形拉平型矩阵,该基质是二阶椭圆差差算子的一致估计器。最终的数值方法是解决受神经网络假设空间解决方案的高度非凸经验最小化问题。在体积良好的椭圆PDE设置中,当假设空间由具有无限宽度或深度的神经网络组成时,我们表明,经验损失函数的全球最小化器是大型训练数据极限的一致解决方案。当假设空间是一个两层神经网络时,我们表明,对于足够大的宽度,梯度下降可以识别经验损失函数的全局最小化器。支持数值示例证明了解决方案的收敛性,范围从具有低和高共限度的简单歧管到具有和没有边界的粗糙表面。我们还表明,所提出的NN求解器可以在具有概括性误差的新数据点上稳健地概括PDE解决方案,这些误差几乎与训练错误相同,从而取代了基于Nystrom的插值方法。
translated by 谷歌翻译
在许多应用中,我们获得了流畅的函数的嘈杂模态样本的访问,其目标是鲁棒地解开样本,即估计该功能的原始样本。在最近的工作中,Cucuringu和Tyagi通过首先将它们代表在单元复杂圆上,然后解决平滑度规则化最小二乘问题 - Laplacian的平滑度适用的Proximity Graph的平滑度$ G $ - ON单位圆的产品歧管。这个问题是二次受约束的二次程序(QCQP),其是非凸显的,因此提出解决其球形放松导致信任区域子问题(TRS)。就理论担保而言,派生$ \ ell_2 $错误界限(trs)。然而,这些界限通常弱,并且没有真正证明由(TRS)进行的去噪。在这项工作中,我们分析(TRS)以及(QCQP)的不受约束的放松。对于这些估算器,我们在高斯噪声的设置中提供了一种精致的分析,并导出了噪音制度,其中他们可否证明模数观察W.R.T $ \ ell_2 $常规。分析在$ G $是任何连接的图形中的常规设置中进行。
translated by 谷歌翻译
Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
translated by 谷歌翻译
在非参数回归中,落在欧几里德空间的限制子集中是常见的。基于典型的内核的方法,不考虑收集观察的域的内在几何学可能产生次优效果。在本文中,我们专注于在高斯过程(GP)模型的背景下解决这个问题,提出了一种新的基于Graplacian的GPS(GL-GPS),该GPS(GL-GPS),该GPS(GL-GPS)学习尊重输入域几何的协方差。随着热核的难以计算地,我们使用Prop Laplacian(GL)的有限许多特征方来近似协方差。 GL由内核构成,仅取决于输入的欧几里德坐标。因此,我们可以从关于内核的完整知识中受益,以通过NYSTR \“{o} M型扩展来将协方差结构扩展到新到达的样本。我们为GL-GP方法提供了实质性的理论支持,并说明了性能提升各种应用。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
Consider $n$ points independently sampled from a density $p$ of class $\mathcal{C}^2$ on a smooth compact $d$-dimensional sub-manifold $\mathcal{M}$ of $\mathbb{R}^m$, and consider the generator of a random walk visiting these points according to a transition kernel $K$. We study the almost sure uniform convergence of this operator to the diffusive Laplace-Beltrami operator when $n$ tends to infinity. This work extends known results of the past 15 years. In particular, our result does not require the kernel $K$ to be continuous, which covers the cases of walks exploring $k$NN-random and geometric graphs, and convergence rates are given. The distance between the random walk generator and the limiting operator is separated into several terms: a statistical term, related to the law of large numbers, is treated with concentration tools and an approximation term that we control with tools from differential geometry. The convergence of $k$NN Laplacians is detailed.
translated by 谷歌翻译
通过梯度流优化平均平衡误差,研究了功能空间中神经网络的动态。我们认为,在underParameterized制度中,网络了解由与其特征值对应的率的神经切线内核(NTK)确定的整体运算符$ t_ {k ^ \ infty} $的特征功能。例如,对于SPENTE $ S ^ {D-1} $和旋转不变的权重分配的均匀分布式数据,$ t_ {k ^ \ infty} $的特征函数是球形谐波。我们的结果可以理解为描述interparameterized制度中的光谱偏压。证据使用“阻尼偏差”的概念,其中NTK物质对具有由于阻尼因子的发生而具有大特征值的特征的偏差。除了下公共条例的制度之外,阻尼偏差可用于跟踪过度分辨率设置中经验风险的动态,允许我们在文献中延长某些结果。我们得出结论,阻尼偏差在优化平方误差时提供了动态的简单和统一的视角。
translated by 谷歌翻译