Deep learning-based 3D object detectors have made significant progress in recent years and have been deployed in a wide range of applications. It is crucial to understand the robustness of detectors against adversarial attacks when employing detectors in security-critical applications. In this paper, we make the first attempt to conduct a thorough evaluation and analysis of the robustness of 3D detectors under adversarial attacks. Specifically, we first extend three kinds of adversarial attacks to the 3D object detection task to benchmark the robustness of state-of-the-art 3D object detectors against attacks on KITTI and Waymo datasets, subsequently followed by the analysis of the relationship between robustness and properties of detectors. Then, we explore the transferability of cross-model, cross-task, and cross-data attacks. We finally conduct comprehensive experiments of defense for 3D detectors, demonstrating that simple transformations like flipping are of little help in improving robustness when the strategy of transformation imposed on input point cloud data is exposed to attackers. Our findings will facilitate investigations in understanding and defending the adversarial attacks against 3D object detectors to advance this field.
translated by 谷歌翻译
虽然近年来,在2D图像领域的攻击和防御中,许多努力已经探讨了3D模型的脆弱性。现有的3D攻击者通常在点云上执行点明智的扰动,从而导致变形的结构或异常值,这很容易被人类察觉。此外,它们的对抗示例是在白盒设置下产生的,当转移到攻击远程黑匣子型号时经常遭受低成功率。在本文中,我们通过提出一种新的难以察觉的转移攻击(ITA):1)难以察觉的3D点云攻击来自两个新的和具有挑战性的观点:1)难以察觉:沿着邻域表面的正常向量限制每个点的扰动方向,导致产生具有类似几何特性的示例,从而增强了难以察觉。 2)可转移性:我们开发了一个对抗性转变模型,以产生最有害的扭曲,并强制实施对抗性示例来抵抗它,从而提高其对未知黑匣子型号的可转移性。此外,我们建议通过学习更辨别的点云表示来培训更强大的黑盒3D模型来防御此类ITA攻击。广泛的评估表明,我们的ITA攻击比最先进的人更令人无法察觉和可转让,并验证我们的国防战略的优势。
translated by 谷歌翻译
3D点云正在成为许多现实世界应用中的关键数据表示形式,例如自动驾驶,机器人技术和医学成像。尽管深度学习的成功进一步加速了物理世界中3D点云的采用,但深度学习因其易受对抗性攻击的脆弱性而臭名昭著。在这项工作中,我们首先确定最先进的经验防御,对抗性训练,由于梯度混淆,在适用于3D点云模型方面有一个重大限制。我们进一步提出了PointDP,这是一种纯化策略,利用扩散模型来防御3D对抗攻击。我们对六个代表性3D点云体系结构进行了广泛的评估,并利用10+强和适应性攻击来证明其较低的稳健性。我们的评估表明,在强烈攻击下,PointDP比最新的纯化方法实现了明显更好的鲁棒性。在不久的将来将包括与PointDP合并的随机平滑验证结果的结果。
translated by 谷歌翻译
随着点云上的3D对象检测依赖于点之间的几何关系,非标准对象形状可以妨碍方法的检测能力。然而,在安全关键环境中,在分销外和长尾样品上的鲁棒性是对规避危险问题的基础,例如损坏或稀有汽车的误读。在这项工作中,我们通过在训练期间考虑到变形的点云来大大改善3D对象探测器的概括到域名数据。我们通过3D-VFIEL实现这一点:一种新的方法,可以通过越野时代的载体衡量物体。我们的方法将3D点限制以沿着传感器视图幻灯片幻灯片,而既不添加也不添加它们中的任何一个。所获得的载体是可转移的,独立于样的和保持形状平滑度和闭塞。通过在训练期间使用这些载体场产生的变形来增强正常样本,我们显着改善了对不同形状物体的鲁棒性,例如损坏/变形汽车,即使仅在基蒂训练。为此,我们提出并分享开源Crashd:现实损坏和稀有汽车的合成数据集,具有各种碰撞情景。在Kitti,Waymo,我们的Crashd和Sun RGB-D上进行了广泛的实验,表明了我们对室内和室外场景的域外数据,不同型号和传感器,即LIDAR和TOF相机的技术的高度普遍性。我们的crashd数据集可在https://crashd-cars.github.io上获得。
translated by 谷歌翻译
Point cloud completion, as the upstream procedure of 3D recognition and segmentation, has become an essential part of many tasks such as navigation and scene understanding. While various point cloud completion models have demonstrated their powerful capabilities, their robustness against adversarial attacks, which have been proven to be fatally malicious towards deep neural networks, remains unknown. In addition, existing attack approaches towards point cloud classifiers cannot be applied to the completion models due to different output forms and attack purposes. In order to evaluate the robustness of the completion models, we propose PointCA, the first adversarial attack against 3D point cloud completion models. PointCA can generate adversarial point clouds that maintain high similarity with the original ones, while being completed as another object with totally different semantic information. Specifically, we minimize the representation discrepancy between the adversarial example and the target point set to jointly explore the adversarial point clouds in the geometry space and the feature space. Furthermore, to launch a stealthier attack, we innovatively employ the neighbourhood density information to tailor the perturbation constraint, leading to geometry-aware and distribution-adaptive modifications for each point. Extensive experiments against different premier point cloud completion networks show that PointCA can cause a performance degradation from 77.9% to 16.7%, with the structure chamfer distance kept below 0.01. We conclude that existing completion models are severely vulnerable to adversarial examples, and state-of-the-art defenses for point cloud classification will be partially invalid when applied to incomplete and uneven point cloud data.
translated by 谷歌翻译
视觉检测是自动驾驶的关键任务,它是自动驾驶计划和控制的关键基础。深度神经网络在各种视觉任务中取得了令人鼓舞的结果,但众所周知,它们容易受到对抗性攻击的影响。在人们改善其稳健性之前,需要对深层视觉探测器的脆弱性进行全面的了解。但是,只有少数对抗性攻击/防御工程集中在对象检测上,其中大多数仅采用分类和/或本地化损失,而忽略了目的方面。在本文中,我们确定了Yolo探测器中与物体相关的严重相关对抗性脆弱性,并提出了针对自动驾驶汽车视觉检测物质方面的有效攻击策略。此外,为了解决这种脆弱性,我们提出了一种新的客观性训练方法,以进行视觉检测。实验表明,针对目标方面的拟议攻击比分别在KITTI和COCO流量数据集中分类和/或本地化损失产生的攻击效率高45.17%和43.50%。此外,拟议的对抗防御方法可以分别在Kitti和Coco交通方面提高检测器对目标攻击的鲁棒性高达21%和12%的地图。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
在过去的十年中,深度学习急剧改变了传统的手工艺特征方式,具有强大的功能学习能力,从而极大地改善了传统任务。然而,最近已经证明了深层神经网络容易受到对抗性例子的影响,这种恶意样本由小型设计的噪音制作,误导了DNNs做出错误的决定,同时仍然对人类无法察觉。对抗性示例可以分为数字对抗攻击和物理对抗攻击。数字对抗攻击主要是在实验室环境中进行的,重点是改善对抗性攻击算法的性能。相比之下,物理对抗性攻击集中于攻击物理世界部署的DNN系统,这是由于复杂的物理环境(即亮度,遮挡等),这是一项更具挑战性的任务。尽管数字对抗和物理对抗性示例之间的差异很小,但物理对抗示例具有特定的设计,可以克服复杂的物理环境的效果。在本文中,我们回顾了基于DNN的计算机视觉任务任务中的物理对抗攻击的开发,包括图像识别任务,对象检测任务和语义细分。为了完整的算法演化,我们将简要介绍不涉及身体对抗性攻击的作品。我们首先提出一个分类方案,以总结当前的物理对抗攻击。然后讨论现有的物理对抗攻击的优势和缺点,并专注于用于维持对抗性的技术,当应用于物理环境中时。最后,我们指出要解决的当前身体对抗攻击的问题并提供有前途的研究方向。
translated by 谷歌翻译
利用3D点云数据已经成为在面部识别和自动驾驶等许多领域部署人工智能的迫切需要。然而,3D点云的深度学习仍然容易受到对抗的攻击,例如迭代攻击,点转换攻击和生成攻击。这些攻击需要在严格的界限内限制对抗性示例的扰动,导致不切实际的逆势3D点云。在本文中,我们提出了对普遍的图形 - 卷积生成的对抗网络(ADVGCGAN)从头开始产生视觉上现实的对抗3D点云。具体地,我们使用图形卷积发电机和带有辅助分类器的鉴别器来生成现实点云,从真实3D数据学习潜在分布。不受限制的对抗性攻击损失纳入GaN的特殊逆势训练中,使得发电机能够产生对抗实例来欺骗目标网络。与现有的最先进的攻击方法相比,实验结果表明了我们不受限制的对抗性攻击方法的有效性,具有更高的攻击成功率和视觉质量。此外,拟议的Advgcan可以实现更好的防御模型和比具有强烈伪装的现有攻击方法更好的转移性能。
translated by 谷歌翻译
考虑到整个时间领域的信息有助于改善自动驾驶中的环境感知。但是,到目前为止,尚未研究暂时融合的神经网络是否容易受到故意产生的扰动,即对抗性攻击,或者时间历史是否是对它们的固有防御。在这项工作中,我们研究了用于对象检测的时间特征网络是否容易受到通用对抗性攻击的影响。我们评估了两种类型的攻击:整个图像和本地界面贴片的不可察觉噪声。在这两种情况下,使用PGD以白盒方式生成扰动。我们的实验证实,即使攻击时间的一部分时间都足以欺骗网络。我们在视觉上评估生成的扰动,以了解攻击功能。为了增强鲁棒性,我们使用5-PGD应用对抗训练。我们在Kitti和Nuscenes数据集上进行的实验证明了通过K-PGD鲁棒化的模型能够承受研究的攻击,同时保持基于地图的性能与未破坏模型的攻击。
translated by 谷歌翻译
由遮挡,信号丢失或手动注释错误引起的3D边界框的地面真相注释的固有歧义可能会使训练过程中的深3D对象检测器混淆,从而使检测准确性恶化。但是,现有方法在某种程度上忽略了此类问题,并将标签视为确定性。在本文中,我们提出了GLENET,这是一个从条件变异自动编码器改编的生成标签不确定性估计框架,以建模典型的3D对象与其潜在的潜在基边界框之间具有潜在变量的一对一关系。 Glenet产生的标签不确定性是一个插件模块,可以方便地集成到现有的深3D检测器中,以构建概率检测器并监督本地化不确定性的学习。此外,我们提出了概率探测器中的不确定性质量估计量架构,以指导对IOU分支的培训,并预测了本地化不确定性。我们将提出的方法纳入各种流行的3D检测器中,并观察到它们的性能显着提高到Waymo Open DataSet和Kitti数据集中的当前最新技术。
translated by 谷歌翻译
通过采用深层CNN(卷积神经网络)和GCN(图卷积网络),最近对3D点云语义分割的研究努力取得了出色的表现。然而,这些复杂模型的鲁棒性尚未得到系统地分析。鉴于在许多安全关键型应用中应用了语义分割(例如,自主驾驶,地质感测),特别是填补这种知识差距,特别是这些模型在对抗性样本下的影响。虽然已经研究了针对点云的对抗攻击,但我们发现所有这些都是针对单一物体识别的,并且在点坐标上进行扰动。我们认为,基于坐标的扰动不太可能在物理世界的限制下实现。因此,我们提出了一种名为Colper的新的无色扰动方法,并将其定制为语义分割。通过评估室内数据集(S3DIS)和室外数据集(语义3D)对三点云分割模型(PointNet ++,Deepgcns和Randla-Net)进行评估,我们发现只有颜色的扰动足以显着降低分割精度和AIOU ,在目标和非目标攻击设置下。
translated by 谷歌翻译
随着各种3D安全关键应用的关注,点云学习模型已被证明容易受到对抗性攻击的影响。尽管现有的3D攻击方法达到了很高的成功率,但它们会以明显的扰动来深入研究数据空间,这可能会忽略几何特征。取而代之的是,我们从新的角度提出了点云攻击 - 图谱域攻击,旨在在光谱域中扰动图形转换系数,该系数对应于改变某些几何结构。具体而言,利用图形信号处理,我们首先通过图形傅立叶变换(GFT)自适应地将点的坐标转换为光谱域,以进行紧凑的表示。然后,我们基于我们建议通过可学习的图形光谱滤波器扰动GFT系数的几何结构的影响。考虑到低频组件主要有助于3D对象的粗糙形状,我们进一步引入了低频约束,以限制不察觉到的高频组件中的扰动。最后,通过将扰动的光谱表示形式转换回数据域,从而生成对抗点云。实验结果证明了拟议攻击的有效性,这些攻击既有易经性和攻击成功率。
translated by 谷歌翻译
With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial perturbations are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.
translated by 谷歌翻译
最近,3D深度学习模型已被证明易于对其2D对应物的对抗性攻击影响。大多数最先进的(SOTA)3D对抗性攻击对3D点云进行扰动。为了在物理场景中再现这些攻击,需要重建生成的对抗3D点云以网状,这导致其对抗效果显着下降。在本文中,我们提出了一个名为Mesh攻击的强烈的3D对抗性攻击,通过直接对3D对象的网格进行扰动来解决这个问题。为了利用最有效的基于梯度的攻击,介绍了一种可差异化的样本模块,其反向传播点云梯度以网格传播。为了进一步确保没有异常值和3D可打印的对抗性网状示例,采用了三种网格损耗。广泛的实验表明,所提出的方案优于SOTA 3D攻击,通过显着的保证金。我们还在各种防御下实现了SOTA表现。我们的代码可用于:https://github.com/cuge1995/mesh-attack。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
已经证明了现代自动驾驶感知系统在处理互补输入之类的利用图像时,已被证明可以改善互补投入。在孤立中,已发现2D图像非常容易受到对抗性攻击的影响。然而,有有限的研究与图像特征融合的多模态模型的对抗鲁棒性。此外,现有的作品不考虑跨输入方式一致的物理上可实现的扰动。在本文中,我们通过将对抗物体放在主车辆的顶部上展示多传感器检测的实际敏感性。我们专注于身体上可实现的和输入 - 不可行的攻击,因为它们是在实践中执行的可行性,并且表明单个通用对手可以隐藏来自最先进的多模态探测器的不同主机。我们的实验表明,成功的攻击主要是由易于损坏的图像特征引起的。此外,我们发现,在将图像特征中的现代传感器融合方法中,对抗攻击可以利用投影过程来在3D中跨越区域产生误报。朝着更强大的多模态感知系统,我们表明,具有特征剥夺的对抗训练可以显着提高对这种攻击的鲁棒性。然而,我们发现标准的对抗性防御仍然努力防止由3D LIDAR点和2D像素之间不准确的关联引起的误报。
translated by 谷歌翻译
在本文中,我们研究了深神经网络中的动态感知对抗攻击问题。大多数现有的对抗性攻击算法是在基本假设下设计的 - 网络架构在整个攻击过程中都是固定的。然而,这种假设不适用于许多最近提出的网络,例如最近提出的网络。 3D稀疏卷积网络,其中包含输入相关的执行,以提高计算效率。它导致严重问题的滞后梯度,由于架构之后的架构而导致当前步骤的学习攻击无效。为了解决这个问题,我们提出了一种带有铅梯度法(LGM)并显示出滞后梯度的显着影响。更具体地说,我们重新制定了梯度,以了解网络架构的潜在动态变化,使得学习攻击更好地“引导”的下一步,而是当网络架构动态变化时的动态 - 不知道方法。关于各种数据集的广泛实验表明,我们的LGM在语义细分和分类上实现了令人印象深刻的性能。与动态无知的方法相比,LGM在SCANNET和S3DIS数据集上均达到约20%的MIOU。 LGM还优于最近的点云攻击。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
尽管在各种应用中取得了突出的性能,但点云识别模型经常遭受自然腐败和对抗性扰动的困扰。在本文中,我们深入研究了点云识别模型的一般鲁棒性,并提出了点云对比对抗训练(PointCat)。 PointCat的主要直觉是鼓励目标识别模型缩小清洁点云和损坏点云之间的决策差距。具体而言,我们利用有监督的对比损失来促进识别模型提取的超晶体特征的对齐和均匀性,并设计一对带有动态原型指南的集中式损失,以避免这些特征与其属于其属于其归属类别群的偏离。为了提供更具挑战性的损坏点云,我们对噪声生成器以及从头开始的识别模型进行了对手训练,而不是将基于梯度的攻击用作内部循环,例如以前的对手训练方法。全面的实验表明,在包括各种损坏的情况下,所提出的PointCat优于基线方法,并显着提高不同点云识别模型的稳健性,包括各向同性点噪声,LIDAR模拟的噪声,随机点掉落和对抗性扰动。
translated by 谷歌翻译