The task of referring video object segmentation aims to segment the object in the frames of a given video to which the referring expressions refer. Previous methods adopt multi-stage approach and design complex pipelines to obtain promising results. Recently, the end-to-end method based on Transformer has proved its superiority. In this work, we draw on the advantages of the above methods to provide a simple and effective pipeline for RVOS. Firstly, We improve the state-of-the-art one-stage method ReferFormer to obtain mask sequences that are strongly correlated with language descriptions. Secondly, based on a reliable and high-quality keyframe, we leverage the superior performance of video object segmentation model to further enhance the quality and temporal consistency of the mask results. Our single model reaches 70.3 J &F on the Referring Youtube-VOS validation set and 63.0 on the test set. After ensemble, we achieve 64.1 on the final leaderboard, ranking 1st place on CVPR2022 Referring Youtube-VOS challenge. Code will be available at https://github.com/Zhiweihhh/cvpr2022-rvos-challenge.git.
translated by 谷歌翻译
参照视频对象分割(R-VOS)是一个新兴的跨通道任务,其目的是分割目标对象中的所有的视频帧称为一个语言表达式。在这项工作中,我们提出了一个简单并在变压器建成统一的框架,称为ReferFormer。它认为在语言查询,并直接参加到视频帧中的最相关的区域。具体而言,我们引入一个小套空调的语言作为输入Transformer对象的查询。通过这种方式,所有的查询有义务仅发现指的对象。他们最终都转化为动态的内核,其捕捉的关键对象级信息,并发挥卷积过滤器的作用,生成特征地图分割口罩。对象跟踪通过连接在帧之间相应的查询自然实现。这种机制极大地简化了管道和终端到终端的框架是从以前的方法不同显著。在REF-YouTube的VOS,REF-DAVIS17大量的实验,A2D-句子和JHMDB-句显示ReferFormer的有效性。上REF-YouTube的VOS,参见-前达到55.6J&F与RESNET-50主链而不花哨,这超过了8.4点之前的状态的最先进的性能。此外,与强斯文 - 大型骨干,ReferFormer实现了所有现有的方法中最好的J&62.4 F。歼&F度量可以通过采用一个简单的后处理技术来进一步升压到63.3。此外,我们分别显示55.0地图和43.7地图上A2D-句andJHMDB-句令人印象深刻的结果,这显著优于大幅度以前的方法。代码是公开的,在https://github.com/wjn922/ReferFormer。
translated by 谷歌翻译
引用视频对象细分任务(RVO)的目的是在所有视频框架中通过语言表达式引用的给定视频中的对象实例。由于需要在各个实例中理解跨模式语义,因此此任务比传统的半监督视频对象细分更具挑战性,在该视频对象分割中,在第一帧中给出了地面真相对象掩盖。随着变压器在对象检测和对象细分方面的巨大成就,RVOS已取得了显着的进步,而Reformen to Reformer实现了最新的性能。在这项工作中,基于强大的基线框架 - 引用者,我们提出了几个技巧来进一步提高,包括周期性学习率,半监督方法和测试时间增加推断。改进的推荐子在CVPR2022上排名第二,参考YouTube-VOS挑战。
translated by 谷歌翻译
随着深度学习的兴起,视频对象细分(VOS)取得了重大进展。但是,仍然存在一些棘手的问题,例如,类似的对象很容易混淆,很难找到微小的对象。为了解决这些问题并进一步提高VOS的性能,我们为这项任务提出了一个简单而有效的解决方案。在解决方案中,我们首先分析YouTube-VOS数据集的分布,并通过引入公共静态和视频分割数据集来补充数据集。然后,我们改善了具有不同特征的三个网络体系结构,并训练多个网络以学习视频中对象的不同特征。之后,我们使用一种简单的方法来集成所有结果,以确保不同的模型相互补充。最后,进行了微妙的后处理,以确保具有精确边界的准确视频对象分割。 YouTube-VOS数据集的大量实验表明,该建议的解决方案在YouTube-VOS 2022测试集上以86.1%的总分达到了最先进的性能,这是YouTube视频对象细分的第五名-VOS挑战2022。
translated by 谷歌翻译
引用的视频对象分割任务(RVOS)涉及在给定视频的帧中分割文本引用的对象实例。由于这种多模式任务的复杂性,它结合了文本推理,视频理解,实例分割和跟踪,现有方法通常依赖于复杂的流水线以解决它。在本文中,我们提出了一种简单的基于变压器的RVO方法。我们的框架称为多模式跟踪变压器(MTTR),将RVOS任务模拟作为序列预测问题。在计算机视觉和自然语言处理的最新进步之后,MTTR基于实现视频和文本可以通过单个多峰变压器模型有效地处理视频和文本。 MTTR是端到端的培训,没有文本相关的电感偏置组件,不需要额外的面具细化后处理步骤。因此,与现有方法相比,它显着简化了RVOS管道。标准基准的评估表明,MTTR在多个度量标准中显着优于前面的艺术。特别是,MTTR分别显示A2D句子和JHMDB句子数据集的令人印象深刻的+5.7和+ 5.0映射增长,同时处理每秒76帧。此外,我们在公开验证集的推荐集上报告了强劲的结果,这是一个更具挑战性的RVOS数据集,该数据集尚未得到研究人员的注意。重现我们的实验的代码可在https://github.com/mttr2021/mttr中获得
translated by 谷歌翻译
引用视频对象细分旨在分割给定语言表达式所引用的对象。现有作品通常需要压缩视频bitstream在分割之前将其解码为RGB帧,从而增加了计算和存储要求,并最终减慢了推断。这可能会妨碍其在现实世界计算资源有限的场景中的应用,例如自动驾驶汽车和无人机。为了减轻此问题,在本文中,我们探讨了压缩视频的引用对象细分任务,即原始视频数据流。除了视频引用对象分割任务本身的固有难度外,从压缩视频中获得歧视性表示也很具有挑战性。为了解决这个问题,我们提出了一个多发网络,该网络由双路线双注意模块和一个基于查询的跨模式变压器模块组成。具体而言,双路线双意见模块旨在从三种模态的压缩数据中提取有效表示,即i框架,运动矢量和残留。基于查询的跨模式变压器首先对语言和视觉方式之间的相关性进行建模,然后使用融合的多模式特征来指导对象查询以生成内容感知的动态内核并预测最终的分割掩码。与以前的作品不同,我们建议只学习一个内核,因此,它可以删除现有方法的复杂后掩模匹配程序。在三个具有挑战性的数据集上进行的广泛有希望的实验结果表明,与几种用于处理RGB数据的最新方法相比,我们的方法的有效性。源代码可在以下网址获得:https://github.com/dexianghong/manet。
translated by 谷歌翻译
引用视频对象分割(R-VOS)旨在分割视频中的对象掩码,并给出将语言表达式转介到对象的情况下。这是最近引入的任务,吸引了不断增长的研究关注。但是,所有现有的作品都有很大的假设:表达式所描绘的对象必须存在于视频中,即表达式和视频必须具有对象级的语义共识。在现实世界中,通常会违反这种表达式的虚假视频,并且由于滥用假设,现有方法总是在此类错误查询中失败。在这项工作中,我们强调研究语义共识对于提高R-VOS的鲁棒性是必要的。因此,我们从没有语义共识假设的R-VOS构成了一个扩展任务,称为Robust R-VOS($ \ Mathrm {R}^2 $ -VOS)。 $ \ mathrm {r}^2 $ - VOS任务与主R-VOS任务的联合建模及其双重问题(文本重建)基本相关。我们接受这样的观察,即嵌入空间通过文本视频文本转换的周期具有关系一致性,该转换将主要问题和双重问题连接起来。我们利用周期一致性来区分语义共识,从而推进主要任务。通过引入早期接地介质,可以实现对主要问题和双重问题的平行优化。收集了一个新的评估数据集,$ \ mathrm {r}^2 $ -Youtube-vos,以测量R-VOS模型针对未配对的视频和表达式的稳健性。广泛的实验表明,我们的方法不仅可以识别出无关表达式和视频的负面对,而且还提高了具有出色歧义能力的正对的分割精度。我们的模型在Ref-Davis17,Ref-Youtube-Vos和Novel $ \ Mathrm {r}^2 $ -Youtube-vos数据集上实现了最先进的性能。
translated by 谷歌翻译
在统一框架中为检测和跟踪建模的时间信息已被证明是视频实例分割(VIS)的有希望的解决方案。但是,如何有效地将时间信息纳入在线模型仍然是一个空旷的问题。在这项工作中,我们提出了一个名为Inspeacity(IAI)的新的在线Vis范式,该范式以有效的方式对检测和跟踪进行建模。详细说明,IAI采用了一个新颖的识别模块来明确预测跟踪实例的标识号。为了传递时间信息跨框架,IAI使用了结合当前特征和过去嵌入的关联模块。值得注意的是,IAI可以与不同的图像模型集成。我们对三个VIS基准进行了广泛的实验。 IAI在YouTube-VIS-2019(Resnet-101 41.9地图)和YouTube-VIS-2021(Resnet-50 37.7地图)上胜过所有在线竞争对手。令人惊讶的是,在更具挑战性的OVI上,IAI实现了SOTA性能(20.3地图)。代码可从https://github.com/zfonemore/iai获得
translated by 谷歌翻译
Referring image segmentation aims to segment the target object described by a given natural language expression. Typically, referring expressions contain complex relationships between the target and its surrounding objects. The main challenge of this task is to understand the visual and linguistic content simultaneously and to find the referred object accurately among all instances in the image. Currently, the most effective way to solve the above problem is to obtain aligned multi-modal features by computing the correlation between visual and linguistic feature modalities under the supervision of the ground-truth mask. However, existing paradigms have difficulty in thoroughly understanding visual and linguistic content due to the inability to perceive information directly about surrounding objects that refer to the target. This prevents them from learning aligned multi-modal features, which leads to inaccurate segmentation. To address this issue, we present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features by guiding the interaction between vision and language through prior position information. Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment by comparing the features of the referred object with those of related objects. Extensive experiments on three benchmarks demonstrate our PCAN performs favorably against the state-of-the-art methods. Our code will be made publicly available.
translated by 谷歌翻译
Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, due to the lack of instance understanding ability, the above approaches are oftentimes brittle to large appearance variations or viewpoint changes resulted from the movement of objects and cameras. In this paper, we argue that instance understanding matters in VOS, and integrating it with memory-based matching can enjoy the synergy, which is intuitively sensible from the definition of VOS task, \ie, identifying and segmenting object instances within the video. Towards this goal, we present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank. We employ the well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-augmented matching is further performed. In addition, we introduce a multi-path fusion block to effectively combine the memory readout with multi-scale features from the instance segmentation decoder, which incorporates high-resolution instance-aware features to produce final segmentation results. Our method achieves state-of-the-art performance on DAVIS 2016/2017 val (92.6% and 87.1%), DAVIS 2017 test-dev (82.8%), and YouTube-VOS 2018/2019 val (86.3% and 86.3%), outperforming alternative methods by clear margins.
translated by 谷歌翻译
光流是一种易于构思和珍贵的提示,用于推进无监督的视频对象细分(UVOS)。以前的大多数方法直接提取并融合了在UVOS设置中分割目标对象的运动和外观特征。但是,光流本质上是连续帧之间所有像素的瞬时速度,因此使运动特征与相应帧之间的主要对象不太对齐。为了解决上述挑战,我们为外观和运动特征对齐方式提出了一个简洁,实用和有效的体系结构,称为层次特征对齐网络(HFAN)。具体而言,HFAN中的关键优点是顺序特征对齐(FAM)模块和特征适应(FAT)模块,这些模块被利用用于处理外观和运动特征。 FAM能够分别将外观和运动特征与主要对象语义表示分别对齐。此外,脂肪是针对外观和运动特征的自适应融合而显式设计的,以实现跨模式特征之间的理想权衡。广泛的实验证明了拟议的HFAN的有效性,该实验在Davis-16上达到了新的最新性能,达到88.7 $ \ MATHCAL {J} \&\ MATHCAL {F} $,即相对改进,即相对改进比最佳发布结果比3.5%。
translated by 谷歌翻译
视频实例细分(VIS)旨在在视频序列中对对象实例进行分类,分割和跟踪。最近基于变压器的神经网络证明了它们为VIS任务建模时空相关性的强大能力。依靠视频或剪辑级输入,它们的潜伏期和计算成本很高。我们提出了一个强大的上下文融合网络来以在线方式解决VIS,该网络可以预测实例通过前几个框架进行逐帧的细分框架。为了有效地获取每个帧的精确和时间一致的预测,关键思想是将有效和紧凑的上下文从参考框架融合到目标框架中。考虑到参考和目标框架对目标预测的不同影响,我们首先通过重要性感知的压缩总结上下文特征。采用变压器编码器来融合压缩上下文。然后,我们利用嵌入订单的实例来传达身份感知信息,并将身份与预测的实例掩码相对应。我们证明,我们强大的融合网络在现有的在线VIS方法中取得了最佳性能,并且比以前在YouTube-VIS 2019和2021基准上发布的剪辑级方法更好。此外,视觉对象通常具有声学签名,这些签名自然与它们在录音录像中自然同步。通过利用我们的上下文融合网络在多模式数据上的灵活性,我们进一步研究了音频对视频密集预测任务的影响,这在现有作品中从未讨论过。我们建立了一个视听实例分割数据集,并证明野外场景中的声学信号可以使VIS任务受益。
translated by 谷歌翻译
In this work, we present a new computer vision task named video object of interest segmentation (VOIS). Given a video and a target image of interest, our objective is to simultaneously segment and track all objects in the video that are relevant to the target image. This problem combines the traditional video object segmentation task with an additional image indicating the content that users are concerned with. Since no existing dataset is perfectly suitable for this new task, we specifically construct a large-scale dataset called LiveVideos, which contains 2418 pairs of target images and live videos with instance-level annotations. In addition, we propose a transformer-based method for this task. We revisit Swin Transformer and design a dual-path structure to fuse video and image features. Then, a transformer decoder is employed to generate object proposals for segmentation and tracking from the fused features. Extensive experiments on LiveVideos dataset show the superiority of our proposed method.
translated by 谷歌翻译
We propose a novel solution for semi-supervised video object segmentation. By the nature of the problem, available cues (e.g. video frame(s) with object masks) become richer with the intermediate predictions. However, the existing methods are unable to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learn to read relevant information from all available sources. In our framework, the past frames with object masks form an external memory, and the current frame as the query is segmented using the mask information in the memory. Specifically, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. Contrast to the previous approaches, the abundant use of the guidance information allows us to better handle the challenges such as appearance changes and occlussions. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (overall score of 79.4 on Youtube-VOS val set,
translated by 谷歌翻译
最近,几种基于空间内存的方法已经验证了将中间框架及其面具作为内存有助于将视频中的目标对象细分目标对象。但是,它们主要集中于当前帧和内存框架之间的更好匹配,而无需明确关注内存质量。因此,较差的分割面罩的框架容易被记住,这导致了分割掩盖误差问题并进一步影响分割性能。此外,随着帧数的增长,内存框架的线性增加还限制了模型处理长视频的能力。为此,我们提出了一个质量感知的动态内存网络(QDMN)来评估每个帧的分割质量,从而使内存库可以选择性地存储准确的分段框架,以防止误差积累问题。然后,我们将细分质量与时间一致性相结合,以动态更新内存库以提高模型的实用性。我们的QDMN没有任何铃铛和哨子,在戴维斯和YouTube-Vos基准测试中都取得了新的最新性能。此外,广泛的实验表明,提议的质量评估模块(QAM)可以作为通用插件应用于基于内存的方法,并显着提高性能。我们的源代码可在https://github.com/workforai/qdmn上找到。
translated by 谷歌翻译
视频实例分割旨在预测每个帧的对象分割掩码,并关联多个帧的实例。最近的端到端视频实例分割方法能够在直接并行序列解码/预测框架中共同执行对象分割和实例关联。尽管这些方法通常可以预测较高质量的对象分割掩码,但它们可能无法在具有挑战性的情况下与实例相关联,因为它们没有明确对相邻帧的时间实例一致性进行建模。我们提出了一个一致的端到端视频实例分割框架,并在框架间反复注意,以建模相邻帧的时间实例一致性和全局时间上下文。我们的广泛实验表明,框架间的重复注意显着提高了时间实例的一致性,同时保持对象分割掩模的质量。我们的模型在YouTubevis-2019(62.1 \%)和YouTubevis-2021(54.7 \%)数据集上都达到了最新的精度。此外,定量和定性结果表明,所提出的方法可以预测更具时间一致的实例分割掩码。
translated by 谷歌翻译
最近,基于内存的方法显示了半监督视频对象分割的有希望的结果。这些方法可以通过对先前掩码的经常更新的内存来预测对象蒙版逐帧。与这种人均推断不同,我们通过将视频对象分割视为夹子掩盖传播来研究替代角度。在此每次CLIP推断方案中,我们使用一个间隔更新内存,并同时处理内存更新之间的一组连续帧(即剪辑)。该方案提供了两个潜在的好处:通过剪辑级优化和效率增益的准确性增益,通过平行计算多个帧。为此,我们提出了一种针对人均推理量身定制的新方法。具体而言,我们首先引入夹具操作,以根据CLIP相关性来完善特征。此外,我们采用了一种渐进匹配机制来在剪辑中有效地通过信息通行。通过两个模块的协同作用和新提议的每盘培训,我们的网络在YouTube-Vos 2018/2019 Val(84.6%和84.6%)和Davis 2016/2017 Val(91.9 Val(91.9 %和86.1%)。此外,我们的模型在不同的内存更新间隔内显示出巨大的速度准确性权衡取舍,从而带来了巨大的灵活性。
translated by 谷歌翻译
本文研究了如何实现更好,更有效的学习学习,以解决在有挑战性的多对象方案下应对半监督视频对象细分。最先进的方法学会用单个正对象解码特征,因此必须在多对象方案下分别匹配和分割每个目标,从而多次消耗计算资源。为了解决问题,我们提出了一个与变压器(AOT)方法的关联对象,以共同且协作匹配和解码多个对象。详细说明,AOT采用识别机制将多个目标关联到相同的高维嵌入空间中。因此,我们可以同时处理多个对象的匹配和分割解码,就像处理单个对象一样有效地解码。为了充分模型多对象关联,设计了长期的短期变压器(LSTT)来构建层次匹配和传播。基于AOT,我们进一步提出了一个更灵活,更健壮的框架,将对象与可扩展的变压器(AOST)相关联,其中LSTT的可扩展版本旨在实现准确性效率折衷的运行时间适应。此外,AOST引入了更好的层次方式,以使识别和视力嵌入。我们对多对象和单对象基准进行了广泛的实验,以检查AOT系列框架。与最先进的竞争对手相比,我们的方法可以保持运行时效率的时间和卓越的性能。值得注意的是,我们在三个受欢迎的基准测试(即YouTube-VOS(86.5%),Davis 2017 Val/Test/Test(87.0%/84.7%)和Davis 2016(93.0%)(93.0%)上,我们实现了新的最先进性能。项目页面:https://github.com/z-x-yang/aot。
translated by 谷歌翻译
我们提出了Minvis,这是一个最小的视频实例细分(VIS)框架,该框架既可以通过基于视频的体系结构也不是培训程序来实现最先进的VIS性能。通过仅培训基于查询的图像实例分割模型,MINVIS在具有挑战性的VIS数据集上优于先前的最佳结果,超过10%的AP。由于Minvis将培训视频中的框架视为独立图像,因此我们可以在培训视频中大量示例带有带有任何修改的培训视频框架。 MINVIS只有1%的标签框架优于表现,或与YouTube-VIS 2019/2021上的完全监督的最新方法相媲美。我们的主要观察结果是,受过训练以歧视框架内对象实例的查询在时间上是一致的,可以用于跟踪实例,而无需任何手动设计的启发式方法。因此,MINVIS具有以下推理管道:我们首先将基于查询的图像实例分割应用于视频帧。然后,通过相应查询的两部分匹配来跟踪分段的实例。此推论是以在线方式完成的,无需立即处理整个视频。因此,MINVI具有降低标签成本和记忆要求的实际优势,同时又不牺牲VIS性能。代码可在以下网址找到:https://github.com/nvlabs/minvis
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译