随着深度学习的兴起,视频对象细分(VOS)取得了重大进展。但是,仍然存在一些棘手的问题,例如,类似的对象很容易混淆,很难找到微小的对象。为了解决这些问题并进一步提高VOS的性能,我们为这项任务提出了一个简单而有效的解决方案。在解决方案中,我们首先分析YouTube-VOS数据集的分布,并通过引入公共静态和视频分割数据集来补充数据集。然后,我们改善了具有不同特征的三个网络体系结构,并训练多个网络以学习视频中对象的不同特征。之后,我们使用一种简单的方法来集成所有结果,以确保不同的模型相互补充。最后,进行了微妙的后处理,以确保具有精确边界的准确视频对象分割。 YouTube-VOS数据集的大量实验表明,该建议的解决方案在YouTube-VOS 2022测试集上以86.1%的总分达到了最先进的性能,这是YouTube视频对象细分的第五名-VOS挑战2022。
translated by 谷歌翻译
本文研究了如何实现更好,更有效的学习学习,以解决在有挑战性的多对象方案下应对半监督视频对象细分。最先进的方法学会用单个正对象解码特征,因此必须在多对象方案下分别匹配和分割每个目标,从而多次消耗计算资源。为了解决问题,我们提出了一个与变压器(AOT)方法的关联对象,以共同且协作匹配和解码多个对象。详细说明,AOT采用识别机制将多个目标关联到相同的高维嵌入空间中。因此,我们可以同时处理多个对象的匹配和分割解码,就像处理单个对象一样有效地解码。为了充分模型多对象关联,设计了长期的短期变压器(LSTT)来构建层次匹配和传播。基于AOT,我们进一步提出了一个更灵活,更健壮的框架,将对象与可扩展的变压器(AOST)相关联,其中LSTT的可扩展版本旨在实现准确性效率折衷的运行时间适应。此外,AOST引入了更好的层次方式,以使识别和视力嵌入。我们对多对象和单对象基准进行了广泛的实验,以检查AOT系列框架。与最先进的竞争对手相比,我们的方法可以保持运行时效率的时间和卓越的性能。值得注意的是,我们在三个受欢迎的基准测试(即YouTube-VOS(86.5%),Davis 2017 Val/Test/Test(87.0%/84.7%)和Davis 2016(93.0%)(93.0%)上,我们实现了新的最先进性能。项目页面:https://github.com/z-x-yang/aot。
translated by 谷歌翻译
在统一框架中为检测和跟踪建模的时间信息已被证明是视频实例分割(VIS)的有希望的解决方案。但是,如何有效地将时间信息纳入在线模型仍然是一个空旷的问题。在这项工作中,我们提出了一个名为Inspeacity(IAI)的新的在线Vis范式,该范式以有效的方式对检测和跟踪进行建模。详细说明,IAI采用了一个新颖的识别模块来明确预测跟踪实例的标识号。为了传递时间信息跨框架,IAI使用了结合当前特征和过去嵌入的关联模块。值得注意的是,IAI可以与不同的图像模型集成。我们对三个VIS基准进行了广泛的实验。 IAI在YouTube-VIS-2019(Resnet-101 41.9地图)和YouTube-VIS-2021(Resnet-50 37.7地图)上胜过所有在线竞争对手。令人惊讶的是,在更具挑战性的OVI上,IAI实现了SOTA性能(20.3地图)。代码可从https://github.com/zfonemore/iai获得
translated by 谷歌翻译
We propose a novel solution for semi-supervised video object segmentation. By the nature of the problem, available cues (e.g. video frame(s) with object masks) become richer with the intermediate predictions. However, the existing methods are unable to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learn to read relevant information from all available sources. In our framework, the past frames with object masks form an external memory, and the current frame as the query is segmented using the mask information in the memory. Specifically, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. Contrast to the previous approaches, the abundant use of the guidance information allows us to better handle the challenges such as appearance changes and occlussions. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (overall score of 79.4 on Youtube-VOS val set,
translated by 谷歌翻译
最近,几种基于空间内存的方法已经验证了将中间框架及其面具作为内存有助于将视频中的目标对象细分目标对象。但是,它们主要集中于当前帧和内存框架之间的更好匹配,而无需明确关注内存质量。因此,较差的分割面罩的框架容易被记住,这导致了分割掩盖误差问题并进一步影响分割性能。此外,随着帧数的增长,内存框架的线性增加还限制了模型处理长视频的能力。为此,我们提出了一个质量感知的动态内存网络(QDMN)来评估每个帧的分割质量,从而使内存库可以选择性地存储准确的分段框架,以防止误差积累问题。然后,我们将细分质量与时间一致性相结合,以动态更新内存库以提高模型的实用性。我们的QDMN没有任何铃铛和哨子,在戴维斯和YouTube-Vos基准测试中都取得了新的最新性能。此外,广泛的实验表明,提议的质量评估模块(QAM)可以作为通用插件应用于基于内存的方法,并显着提高性能。我们的源代码可在https://github.com/workforai/qdmn上找到。
translated by 谷歌翻译
The task of referring video object segmentation aims to segment the object in the frames of a given video to which the referring expressions refer. Previous methods adopt multi-stage approach and design complex pipelines to obtain promising results. Recently, the end-to-end method based on Transformer has proved its superiority. In this work, we draw on the advantages of the above methods to provide a simple and effective pipeline for RVOS. Firstly, We improve the state-of-the-art one-stage method ReferFormer to obtain mask sequences that are strongly correlated with language descriptions. Secondly, based on a reliable and high-quality keyframe, we leverage the superior performance of video object segmentation model to further enhance the quality and temporal consistency of the mask results. Our single model reaches 70.3 J &F on the Referring Youtube-VOS validation set and 63.0 on the test set. After ensemble, we achieve 64.1 on the final leaderboard, ranking 1st place on CVPR2022 Referring Youtube-VOS challenge. Code will be available at https://github.com/Zhiweihhh/cvpr2022-rvos-challenge.git.
translated by 谷歌翻译
Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, due to the lack of instance understanding ability, the above approaches are oftentimes brittle to large appearance variations or viewpoint changes resulted from the movement of objects and cameras. In this paper, we argue that instance understanding matters in VOS, and integrating it with memory-based matching can enjoy the synergy, which is intuitively sensible from the definition of VOS task, \ie, identifying and segmenting object instances within the video. Towards this goal, we present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank. We employ the well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-augmented matching is further performed. In addition, we introduce a multi-path fusion block to effectively combine the memory readout with multi-scale features from the instance segmentation decoder, which incorporates high-resolution instance-aware features to produce final segmentation results. Our method achieves state-of-the-art performance on DAVIS 2016/2017 val (92.6% and 87.1%), DAVIS 2017 test-dev (82.8%), and YouTube-VOS 2018/2019 val (86.3% and 86.3%), outperforming alternative methods by clear margins.
translated by 谷歌翻译
最近,基于内存的方法显示了半监督视频对象分割的有希望的结果。这些方法可以通过对先前掩码的经常更新的内存来预测对象蒙版逐帧。与这种人均推断不同,我们通过将视频对象分割视为夹子掩盖传播来研究替代角度。在此每次CLIP推断方案中,我们使用一个间隔更新内存,并同时处理内存更新之间的一组连续帧(即剪辑)。该方案提供了两个潜在的好处:通过剪辑级优化和效率增益的准确性增益,通过平行计算多个帧。为此,我们提出了一种针对人均推理量身定制的新方法。具体而言,我们首先引入夹具操作,以根据CLIP相关性来完善特征。此外,我们采用了一种渐进匹配机制来在剪辑中有效地通过信息通行。通过两个模块的协同作用和新提议的每盘培训,我们的网络在YouTube-Vos 2018/2019 Val(84.6%和84.6%)和Davis 2016/2017 Val(91.9 Val(91.9 %和86.1%)。此外,我们的模型在不同的内存更新间隔内显示出巨大的速度准确性权衡取舍,从而带来了巨大的灵活性。
translated by 谷歌翻译
视频分割,即将视频帧分组到多个段或对象中,在广泛的实际应用中扮演关键作用,例如电影中的视觉效果辅助,自主驾驶中的现场理解,以及视频会议中的虚拟背景创建,名称一些。最近,由于计算机愿景中的联系复兴,一直存在众多深度学习的方法,这一直专用于视频分割并提供引人注目的性能。在这项调查中,通过引入各自的任务设置,背景概念,感知需要,开发历史,以及开发历史,综合审查这一领域的两种基本研究,即在视频和视频语义分割中,即视频和视频语义分割中的通用对象分段(未知类别)。主要挑战。我们还提供关于两种方法和数据集的代表文学的详细概述。此外,我们在基准数据集中呈现了审查方法的定量性能比较。最后,我们指出了这一领域的一套未解决的开放问题,并提出了进一步研究的可能机会。
translated by 谷歌翻译
现代视频对象分割(VOS)算法以顺序处理顺序实现了显着高的性能,而目前目前普遍的管道仍然表现出一些显而易见的不足,如累积误差,未知的鲁棒性或缺乏适当的解释工具。在本文中,我们将半监控视频对象分割问题放入循环工作流程中,并通过半监控VOS系统的固有循环属性来找到上面的缺陷。首先,循环机制包含在标准顺序流程中的循环机制可以产生更一致的像素 - 方识的表示。依赖于起始帧中的准确参考掩码,我们表明可以减轻错误传播问题。接下来,自然地将离线循环管道扩展到在线方式的简单梯度校正模块,可以突出显示结果的高频率和详细部分,以进一步提高分割质量,同时保持可行的计算成本。同时,这种校正可以保护网络免受干扰信号产生的严重性能下降。最后,我们基于梯度校正过程开发周期有效的接收领域(周期ERF),以提供新的视角,分析特定于对象的感兴趣区域。我们对Davis16,Davis17和Youtube-Vos有挑战性的基准进行全面的比较和详细分析,表明循环机制有助于提高分割质量,提高VOS系统的稳健性,并进一步提供不同VOS算法的定性比较和解释工作。该项目的代码可以在https://github.com/lyxok1/stm-trings找到
translated by 谷歌翻译
半监督视频对象分割(VOS)的任务已经大大提升,最先进的性能是通过密集的基于匹配的方法进行的。最近的方法利用时空存储器(STM)网络并学习从所有可用源检索相关信息,其中使用对象掩模的过去帧形成外部存储器,并且使用存储器中的掩码信息分段为查询作为查询的当前帧进行分割。然而,当形成存储器并执行匹配时,这些方法仅在忽略运动信息的同时利用外观信息。在本文中,我们倡导\ emph {motion信息}的返回,并提出了一个用于半监督VOS的运动不确定性感知框架(MUMET)。首先,我们提出了一种隐含的方法来学习相邻帧之间的空间对应,构建相关成本卷。在构建密集的对应期间处理遮挡和纹理区域的挑战性案例,我们将不确定性纳入密集匹配并实现运动不确定性感知特征表示。其次,我们介绍了运动感知的空间注意模块,以有效地融合了语义特征的运动功能。关于具有挑战性的基准的综合实验表明,\ TextBF {\ Textit {使用少量数据并将其与强大的动作信息组合可以带来显着的性能Boost}}。我们只使用Davis17达到$ \ Mathcal {} $培训{76.5 \%} $ \ mathcal {f} $培训,这显着优于低数据协议下的\ texit {sota}方法。 \ textit {代码将被释放。}
translated by 谷歌翻译
参照视频对象分割(R-VOS)是一个新兴的跨通道任务,其目的是分割目标对象中的所有的视频帧称为一个语言表达式。在这项工作中,我们提出了一个简单并在变压器建成统一的框架,称为ReferFormer。它认为在语言查询,并直接参加到视频帧中的最相关的区域。具体而言,我们引入一个小套空调的语言作为输入Transformer对象的查询。通过这种方式,所有的查询有义务仅发现指的对象。他们最终都转化为动态的内核,其捕捉的关键对象级信息,并发挥卷积过滤器的作用,生成特征地图分割口罩。对象跟踪通过连接在帧之间相应的查询自然实现。这种机制极大地简化了管道和终端到终端的框架是从以前的方法不同显著。在REF-YouTube的VOS,REF-DAVIS17大量的实验,A2D-句子和JHMDB-句显示ReferFormer的有效性。上REF-YouTube的VOS,参见-前达到55.6J&F与RESNET-50主链而不花哨,这超过了8.4点之前的状态的最先进的性能。此外,与强斯文 - 大型骨干,ReferFormer实现了所有现有的方法中最好的J&62.4 F。歼&F度量可以通过采用一个简单的后处理技术来进一步升压到63.3。此外,我们分别显示55.0地图和43.7地图上A2D-句andJHMDB-句令人印象深刻的结果,这显著优于大幅度以前的方法。代码是公开的,在https://github.com/wjn922/ReferFormer。
translated by 谷歌翻译
半监督视频对象细分(VOS)旨在密集跟踪视频中的某些指定对象。该任务中的主要挑战之一是存在与目标对象相似的背景干扰物的存在。我们提出了三种抑制此类干扰因素的新型策略:1)一种时空多元化的模板构建方案,以获得目标对象的广义特性; 2)可学习的距离得分函数,可通过利用两个连续帧之间的时间一致性来排除空间距离的干扰因素; 3)交换和连接的扩展通过提供包含纠缠对象的训练样本来迫使每个对象具有独特的功能。在所有公共基准数据集中,即使是实时性能,我们的模型也与当代最先进的方法相当。定性结果还证明了我们的方法优于现有方法。我们认为,我们的方法将被广泛用于未来的VOS研究。
translated by 谷歌翻译
我们提出了一种称为独角兽的统一方法,可以使用相同的模型参数同时使用单个网络解决四个跟踪问题(SOT,MOT,VOS,MOTS)。由于对象跟踪问题本身的定义零散,因此开发了大多数现有的跟踪器来解决任务的单个或一部分,并过分地对特定任务的特征进行了专业化。相比之下,Unicorn提供了一个统一的解决方案,在所有跟踪任务中采用相同的输入,骨干,嵌入和头部。我们第一次完成了跟踪网络体系结构和学习范式的巨大统一。Unicorn在8个跟踪数据集中的特定于任务特定的对应物(包括Lasot,TrackingNet,Mot17,BDD100K,Davis16-17,MOTS20和BDD100K MOT)在PAR上或更好的对应物。我们认为,独角兽将是朝着一般视觉模型迈出的坚实一步。代码可从https://github.com/masterbin-iiau/unicorn获得。
translated by 谷歌翻译
This paper focuses on developing a more effective method of hierarchical propagation for semi-supervised Video Object Segmentation (VOS). Based on vision transformers, the recently-developed Associating Objects with Transformers (AOT) approach introduces hierarchical propagation into VOS and has shown promising results. The hierarchical propagation can gradually propagate information from past frames to the current frame and transfer the current frame feature from object-agnostic to object-specific. However, the increase of object-specific information will inevitably lead to the loss of object-agnostic visual information in deep propagation layers. To solve such a problem and further facilitate the learning of visual embeddings, this paper proposes a Decoupling Features in Hierarchical Propagation (DeAOT) approach. Firstly, DeAOT decouples the hierarchical propagation of object-agnostic and object-specific embeddings by handling them in two independent branches. Secondly, to compensate for the additional computation from dual-branch propagation, we propose an efficient module for constructing hierarchical propagation, i.e., Gated Propagation Module, which is carefully designed with single-head attention. Extensive experiments show that DeAOT significantly outperforms AOT in both accuracy and efficiency. On YouTube-VOS, DeAOT can achieve 86.0% at 22.4fps and 82.0% at 53.4fps. Without test-time augmentations, we achieve new state-of-the-art performance on four benchmarks, i.e., YouTube-VOS (86.2%), DAVIS 2017 (86.2%), DAVIS 2016 (92.9%), and VOT 2020 (0.622). Project page: https://github.com/z-x-yang/AOT.
translated by 谷歌翻译
半监控视频对象分割(VOS)旨在跟踪像素级别的视频初始帧中存在的指定对象。为了充分利用对象的外观信息,像素级别匹配广泛用于VOS。传统的特征匹配以样式方式运行,即,仅考虑从查询帧到参考帧的最佳匹配。查询框中的每个位置是指参考帧中的最佳位置,而不管每个参考帧位置的频率如何。在大多数情况下,这效果很好,并且对快速外观变化是强大的,但是当查询框架包含看起来类似于目标对象的后台分散组时可能会导致严重错误。为了缓解这一问题,我们介绍了一种自由派匹配机制,找到从查询帧到参考帧的最佳匹配,反之亦然。在查找查询帧像素的最佳匹配之前,首先考虑用于参考帧像素的最佳匹配以防止每个参考帧像素被过度参考。由于该机制以严格的方式操作,即,如果才能彼此确定匹配,则连接像素,因此可以有效地消除背景干扰器。此外,我们提出了一个掩模嵌入模块,以改善现有的掩模传播方法。通过使用坐标信息嵌入多个历史掩模,可以有效地捕获目标对象的位置信息。
translated by 谷歌翻译
现有的基于匹配的方法通过从像素级内存中检索支持功能执行视频对象细分(VOS),而某些像素可能会遭受内存中缺乏对应关系(即看不见),这不可避免地限制了他们的细分性能。在本文中,我们提出了一个两流网络(TSN)。我们的TSN包含(i)带有常规像素级内存的像素流,以根据其像素级内存检索分割可见像素。 (ii)一个看不见的像素的实例流,其中对实例的整体理解是在动态分割头上以基于目标实例的特征进行条件的。 (iii)一个像素划分模块生成路由图,将两个流的输出嵌入在一起融合在一起。紧凑的实例流有效地提高了看不见的像素的分割精度,同时将两个流与自适应路由图融合在一起,导致整体性能提升。通过广泛的实验,我们证明了我们提出的TSN的有效性,并且还报告了2018年YouTube-VOS的最先进性能为86.1%,在Davis-2017验证案例中为87.5%。
translated by 谷歌翻译
虽然深度学习方法近年来取得了高级视频对象识别性能,但在视频中感知封闭对象仍然是一个非常具有挑战性的任务。为促进遮挡理解的发展,我们在遮挡方案中收集一个名为OVIS的大规模数据集,用于遮挡方案中的视频实例分段。 ovis由296K高质量的屏幕和901个遮挡场景组成。虽然我们的人类视觉系统可以通过语境推理和关联来感知那些遮挡物体,但我们的实验表明当前的视频了解系统不能。在ovis数据集上,所有基线方法都遇到了大约80%的大约80%的大约80%,这表明仍然有很长的路要走在复杂的真实情景中理解模糊物体和视频。为了促进对视频理解系统的新范式研究,我们基于OVI数据集启动了挑战。提交的顶级执行算法已经比我们的基线实现了更高的性能。在本文中,我们将介绍OVIS数据集,并通过分析基线的结果和提交的方法来进一步剖析。可以在http://songbai.site/ovis找到ovis数据集和挑战信息。
translated by 谷歌翻译
最近,基于模板的跟踪器已成为领先的跟踪算法,在效率和准确性方面具有希望的性能。然而,查询特征与给定模板之间的相关操作仅利用准确的目标本地化,导致状态估计误差,特别是当目标遭受严重可变形变化时。为了解决这个问题,已经提出了基于分段的跟踪器,以便使用每像素匹配来有效地提高可变形物体的跟踪性能。然而,大多数现有跟踪器仅指初始帧中的目标特征,从而缺乏处理具有挑战性因素的辨别能力,例如,类似的分心,背景杂乱,外观变化等。在此目的,我们提出了一种动态的紧凑型存储器嵌入以增强基于分段的可变形视觉跟踪方法的辨别。具体而言,我们初始化与第一帧中的目标功能嵌入的内存嵌入。在跟踪过程中,与现有内存具有高相关的当前目标特征被更新为在线嵌入的内存。为了进一步提高可变形对象的分割精度,我们采用了点对集的匹配策略来测量像素 - 方向查询特征和整个模板之间的相关性,以捕获更详细的变形信息。关于六个具有挑战性的跟踪基准的广泛评估,包括VOT2016,VOT2018,VOT2019,GOT-10K,TrackingNet和莱斯特展示了我们对近期近似追踪者的方法的优势。此外,我们的方法优于基于出色的基于分段的跟踪器,即DVIS2017基准测试。
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译