The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Current outdoor LiDAR-based 3D object detection methods mainly adopt the training-from-scratch paradigm. Unfortunately, this paradigm heavily relies on large-scale labeled data, whose collection can be expensive and time-consuming. Self-supervised pre-training is an effective and desirable way to alleviate this dependence on extensive annotated data. Recently, masked modeling has become a successful self-supervised learning approach for point clouds. However, current works mainly focus on synthetic or indoor datasets. When applied to large-scale and sparse outdoor point clouds, they fail to yield satisfactory results. In this work, we present BEV-MAE, a simple masked autoencoder pre-training framework for 3D object detection on outdoor point clouds. Specifically, we first propose a bird's eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation in a BEV perspective and avoid complex decoder design during pre-training. Besides, we introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder with fine-tuning for masked point cloud inputs. Finally, based on the property of outdoor point clouds, i.e., the point clouds of distant objects are more sparse, we propose point density prediction to enable the 3D encoder to learn location information, which is essential for object detection. Experimental results show that BEV-MAE achieves new state-of-the-art self-supervised results on both Waymo and nuScenes with diverse 3D object detectors. Furthermore, with only 20% data and 7% training cost during pre-training, BEV-MAE achieves comparable performance with the state-of-the-art method ProposalContrast. The source code and pre-trained models will be made publicly available.
translated by 谷歌翻译
Storytelling and narrative are fundamental to human experience, intertwined with our social and cultural engagement. As such, researchers have long attempted to create systems that can generate stories automatically. In recent years, powered by deep learning and massive data resources, automatic story generation has shown significant advances. However, considerable challenges, like the need for global coherence in generated stories, still hamper generative models from reaching the same storytelling ability as human narrators. To tackle these challenges, many studies seek to inject structured knowledge into the generation process, which is referred to as structure knowledge-enhanced story generation. Incorporating external knowledge can enhance the logical coherence among story events, achieve better knowledge grounding, and alleviate over-generalization and repetition problems in stories. This survey provides the latest and comprehensive review of this research field: (i) we present a systematical taxonomy regarding how existing methods integrate structured knowledge into story generation; (ii) we summarize involved story corpora, structured knowledge datasets, and evaluation metrics; (iii) we give multidimensional insights into the challenges of knowledge-enhanced story generation and cast light on promising directions for future study.
translated by 谷歌翻译
现有的假新闻检测方法旨在将新闻分类为真或错误,并提供真实的解释,从而实现出色的表现。但是,他们经常根据有限的新闻报道和揭穿延误来定制手动事实检查报告的自动解决方案。如果尚未对一段新闻进行事实检查或揭穿事实,通常会在各种媒体上传播一定数量的相关原始报告,其中包含人群的智慧来验证新闻声明并解释其判决。在本文中,我们提出了一个新颖的粗到十五级别的级联证据依据(COFCED)神经网络,以根据此类原始报告来解释假新闻检测,从而减轻了对事实检查的依赖性。具体而言,我们首先使用层次结构编码器来用于Web文本表示,然后开发两个级联的选择器,以粗略至上的方式在所选的Top-K报告之上选择最可解释的句子。此外,我们构建了两个可解释的假新闻数据集,这些数据集可公开使用。实验结果表明,我们的模型显着优于最先进的基线,并从不同的评估角度产生高质量的解释。
translated by 谷歌翻译
现有的光流估计器通常采用通常用于图像分类的网络体系结构作为提取人均功能的编码器。但是,由于任务之间的自然差异,用于图像分类的架构可能是最佳的流量估计。为了解决此问题,我们建议一种名为Falownas的神经体系结构搜索方法,以自动找到用于流估计任务的更好的编码器体系结构。我们首先设计一个合适的搜索空间,包括各种卷积运算符,并构建一个体重共享的超级网络,以有效评估候选体系结构。然后,为了更好地训练超级网络,我们提出了特征对齐蒸馏,该蒸馏利用训练有素的流量估计器来指导超级网络的训练。最后,利用资源约束的进化算法找到最佳体系结构(即子网络)。实验结果表明,从超级网络继承的权重的发现的结构达到了4.67 \%f1-able kitti上的误差,这是RAFT基线的8.4 \%降低,超过了先进的手工制作的型号GMA和AGFlow,同时降低模型的复杂性和延迟。源代码和训练有素的模型将在https://github.com/vdigpku/flownas中发布。
translated by 谷歌翻译
Fusing the camera and LiDAR information has become a de-facto standard for 3D object detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to leverage the feature from the image space. However, people discovered that this underlying assumption makes the current fusion framework infeasible to produce any prediction when there is a LiDAR malfunction, regardless of minor or major. This fundamentally limits the deployment capability to realistic autonomous driving scenarios. In contrast, we propose a surprisingly simple yet novel fusion framework, dubbed BEVFusion, whose camera stream does not depend on the input of LiDAR data, thus addressing the downside of previous methods. We empirically show that our framework surpasses the state-of-the-art methods under the normal training settings. Under the robustness training settings that simulate various LiDAR malfunctions, our framework significantly surpasses the state-of-the-art methods by 15.7% to 28.9% mAP. To the best of our knowledge, we are the first to handle realistic LiDAR malfunction and can be deployed to realistic scenarios without any post-processing procedure. The code is available at https://github.com/ADLab-AutoDrive/BEVFusion.
translated by 谷歌翻译
基于学习的培训方法的方法通常需要大量包含现实布局的高质量场景并支持有意义的互动。然而,用于体现AI(EAI)挑战的当前模拟器仅提供具有有限数量的布局的模拟室内场景。本文呈现出发光,第一研究框架采用最先进的室内场景综合算法,以在体现AI挑战的情况下生成大规模模拟场景。此外,我们通过支持复杂的家庭任务的能力自动和定量地评估生成的室内场景的质量。发光结合了一种新颖的场景生成算法(受限的随机现场生成(CSSG)),实现了具有人类设计的场景的竞争性能。在发光,EAI任务执行器,任务指令生成模块和视频呈现工具包中可以集体为实现的AI代理商的培训和评估集体为新场景产生大量多模式数据集。广泛的实验结果表明了发光产生的数据的有效性,使对泛化和鲁棒性的体现特性进行全面评估。
translated by 谷歌翻译
谣言在社交媒体的时代猖獗。谈话结构提供有价值的线索,以区分真实和假声明。然而,现有的谣言检测方法限制为用户响应的严格关系或过度简化对话结构。在这项研究中,为了减轻不相关的帖子施加的负面影响,基本上加强了用户意见的相互作用,首先将谈话线作为无向相互作用图。然后,我们提出了一种用于谣言分类的主导分层图注意网络,其提高了考虑整个社会环境的响应帖子的表示学习,并参加可以在语义上推断目标索赔的帖子。三个Twitter数据集的广泛实验表明,我们的谣言检测方法比最先进的方法实现了更好的性能,并且展示了在早期阶段检测谣言的优异容量。
translated by 谷歌翻译
对于人工学习系统,随着时间的流逝,从数据流进行持续学习至关重要。对监督持续学习的新兴研究取得了长足的进步,而无监督学习中灾难性遗忘的研究仍然是空白的。在无监督的学习方法中,自居民学习方法在视觉表示上显示出巨大的潜力,而无需大规模标记的数据。为了改善自我监督学习的视觉表示,需要更大和更多的数据。在现实世界中,始终生成未标记的数据。这种情况为学习自我监督方法提供了巨大的优势。但是,在当前的范式中,将先前的数据和当前数据包装在一起并再次培训是浪费时间和资源。因此,迫切需要一种持续的自我监督学习方法。在本文中,我们首次尝试通过提出彩排方法来实现连续的对比自我监督学习,从而使以前的数据保持了一些典范。我们通过模仿旧网络通过一组保存的示例,通过模仿旧网络推断出的相似性分数分布,而不是将保存的示例与当前数据集结合到当前的培训数据集,而是利用自我监督的知识蒸馏将对比度信息传输到当前网络。此外,我们建立一个额外的样本队列,以帮助网络区分以前的数据和当前数据并在学习自己的功能表示时防止相互干扰。实验结果表明,我们的方法在CIFAR100和Imagenet-Sub上的性能很好。与基线的学习任务无需采用任何技术,我们将图像分类在CIFAR100上提高了1.60%,Imagenet-Sub上的2.86%,在10个增量步骤设置下对Imagenet-Full进行1.29%。
translated by 谷歌翻译
The task of referring video object segmentation aims to segment the object in the frames of a given video to which the referring expressions refer. Previous methods adopt multi-stage approach and design complex pipelines to obtain promising results. Recently, the end-to-end method based on Transformer has proved its superiority. In this work, we draw on the advantages of the above methods to provide a simple and effective pipeline for RVOS. Firstly, We improve the state-of-the-art one-stage method ReferFormer to obtain mask sequences that are strongly correlated with language descriptions. Secondly, based on a reliable and high-quality keyframe, we leverage the superior performance of video object segmentation model to further enhance the quality and temporal consistency of the mask results. Our single model reaches 70.3 J &F on the Referring Youtube-VOS validation set and 63.0 on the test set. After ensemble, we achieve 64.1 on the final leaderboard, ranking 1st place on CVPR2022 Referring Youtube-VOS challenge. Code will be available at https://github.com/Zhiweihhh/cvpr2022-rvos-challenge.git.
translated by 谷歌翻译