Deep image prior (DIP) has recently attracted attention owing to its unsupervised positron emission tomography (PET) image reconstruction, which does not require any prior training dataset. In this paper, we present the first attempt to implement an end-to-end DIP-based fully 3D PET image reconstruction method that incorporates a forward-projection model into a loss function. To implement a practical fully 3D PET image reconstruction, which could not be performed due to a graphics processing unit memory limitation, we modify the DIP optimization to block-iteration and sequentially learn an ordered sequence of block sinograms. Furthermore, the relative difference penalty (RDP) term was added to the loss function to enhance the quantitative PET image accuracy. We evaluated our proposed method using Monte Carlo simulation with [$^{18}$F]FDG PET data of a human brain and a preclinical study on monkey brain [$^{18}$F]FDG PET data. The proposed method was compared with the maximum-likelihood expectation maximization (EM), maximum-a-posterior EM with RDP, and hybrid DIP-based PET reconstruction methods. The simulation results showed that the proposed method improved the PET image quality by reducing statistical noise and preserved a contrast of brain structures and inserted tumor compared with other algorithms. In the preclinical experiment, finer structures and better contrast recovery were obtained by the proposed method. This indicated that the proposed method can produce high-quality images without a prior training dataset. Thus, the proposed method is a key enabling technology for the straightforward and practical implementation of end-to-end DIP-based fully 3D PET image reconstruction.
translated by 谷歌翻译
List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners with many lines-of-response and additional information such as time-of-flight and depth-of-interaction. Deep learning is one possible solution to enhance the quality of PET image reconstruction. However, the application of deep learning techniques to list-mode PET image reconstruction has not been progressed because list data is a sequence of bit codes and unsuitable for processing by convolutional neural networks (CNN). In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior (DIP) which is the first trial to integrate list-mode PET image reconstruction and CNN. The proposed list-mode DIP reconstruction (LM-DIPRecon) method alternatively iterates the regularized list-mode dynamic row action maximum likelihood algorithm (LM-DRAMA) and magnetic resonance imaging conditioned DIP (MR-DIP) using an alternating direction method of multipliers. We evaluated LM-DIPRecon using both simulation and clinical data, and it achieved sharper images and better tradeoff curves between contrast and noise than the LM-DRAMA, MR-DIP and sinogram-based DIPRecon methods. These results indicated that the LM-DIPRecon is useful for quantitative PET imaging with limited events while keeping accurate raw data information. In addition, as list data has finer temporal information than dynamic sinograms, list-mode deep image prior reconstruction is expected to be useful for 4D PET imaging and motion correction.
translated by 谷歌翻译
Edema is a common symptom of kidney disease, and quantitative measurement of edema is desired. This paper presents a method to estimate the degree of edema from facial images taken before and after dialysis of renal failure patients. As tasks to estimate the degree of edema, we perform pre- and post-dialysis classification and body weight prediction. We develop a multi-patient pre-training framework for acquiring knowledge of edema and transfer the pre-trained model to a model for each patient. For effective pre-training, we propose a novel contrastive representation learning, called weight-aware supervised momentum contrast (WeightSupMoCo). WeightSupMoCo aims to make feature representations of facial images closer in similarity of patient weight when the pre- and post-dialysis labels are the same. Experimental results show that our pre-training approach improves the accuracy of pre- and post-dialysis classification by 15.1% and reduces the mean absolute error of weight prediction by 0.243 kg compared with training from scratch. The proposed method accurately estimate the degree of edema from facial images; our edema estimation system could thus be beneficial to dialysis patients.
translated by 谷歌翻译
Peripheral blood oxygen saturation (SpO2), an indicator of oxygen levels in the blood, is one of the most important physiological parameters. Although SpO2 is usually measured using a pulse oximeter, non-contact SpO2 estimation methods from facial or hand videos have been attracting attention in recent years. In this paper, we propose an SpO2 estimation method from facial videos based on convolutional neural networks (CNN). Our method constructs CNN models that consider the direct current (DC) and alternating current (AC) components extracted from the RGB signals of facial videos, which are important in the principle of SpO2 estimation. Specifically, we extract the DC and AC components from the spatio-temporal map using filtering processes and train CNN models to predict SpO2 from these components. We also propose an end-to-end model that predicts SpO2 directly from the spatio-temporal map by extracting the DC and AC components via convolutional layers. Experiments using facial videos and SpO2 data from 50 subjects demonstrate that the proposed method achieves a better estimation performance than current state-of-the-art SpO2 estimation methods.
translated by 谷歌翻译
Hyperparameter optimization (HPO) is essential for the better performance of deep learning, and practitioners often need to consider the trade-off between multiple metrics, such as error rate, latency, memory requirements, robustness, and algorithmic fairness. Due to this demand and the heavy computation of deep learning, the acceleration of multi-objective (MO) optimization becomes ever more important. Although meta-learning has been extensively studied to speedup HPO, existing methods are not applicable to the MO tree-structured parzen estimator (MO-TPE), a simple yet powerful MO-HPO algorithm. In this paper, we extend TPE's acquisition function to the meta-learning setting, using a task similarity defined by the overlap in promising domains of each task. In a comprehensive set of experiments, we demonstrate that our method accelerates MO-TPE on tabular HPO benchmarks and yields state-of-the-art performance. Our method was also validated externally by winning the AutoML 2022 competition on "Multiobjective Hyperparameter Optimization for Transformers".
translated by 谷歌翻译
Mobile stereo-matching systems have become an important part of many applications, such as automated-driving vehicles and autonomous robots. Accurate stereo-matching methods usually lead to high computational complexity; however, mobile platforms have only limited hardware resources to keep their power consumption low; this makes it difficult to maintain both an acceptable processing speed and accuracy on mobile platforms. To resolve this trade-off, we herein propose a novel acceleration approach for the well-known zero-means normalized cross correlation (ZNCC) matching cost calculation algorithm on a Jetson Tx2 embedded GPU. In our method for accelerating ZNCC, target images are scanned in a zigzag fashion to efficiently reuse one pixel's computation for its neighboring pixels; this reduces the amount of data transmission and increases the utilization of on-chip registers, thus increasing the processing speed. As a result, our method is 2X faster than the traditional image scanning method, and 26% faster than the latest NCC method. By combining this technique with the domain transformation (DT) algorithm, our system show real-time processing speed of 32 fps, on a Jetson Tx2 GPU for 1,280x384 pixel images with a maximum disparity of 128. Additionally, the evaluation results on the KITTI 2015 benchmark show that our combined system is more accurate than the same algorithm combined with census by 7.26%, while maintaining almost the same processing speed.
translated by 谷歌翻译
The black-box nature of end-to-end speech translation (E2E ST) systems makes it difficult to understand how source language inputs are being mapped to the target language. To solve this problem, we would like to simultaneously generate automatic speech recognition (ASR) and ST predictions such that each source language word is explicitly mapped to a target language word. A major challenge arises from the fact that translation is a non-monotonic sequence transduction task due to word ordering differences between languages -- this clashes with the monotonic nature of ASR. Therefore, we propose to generate ST tokens out-of-order while remembering how to re-order them later. We achieve this by predicting a sequence of tuples consisting of a source word, the corresponding target words, and post-editing operations dictating the correct insertion points for the target word. We examine two variants of such operation sequences which enable generation of monotonic transcriptions and non-monotonic translations from the same speech input simultaneously. We apply our approach to offline and real-time streaming models, demonstrating that we can provide explainable translations without sacrificing quality or latency. In fact, the delayed re-ordering ability of our approach improves performance during streaming. As an added benefit, our method performs ASR and ST simultaneously, making it faster than using two separate systems to perform these tasks.
translated by 谷歌翻译
扬声器在彼此保持一致的过程中建立了融洽的关系。在指导域材料的同时,已经证明了与教师的融洽关系,以促进学习。过去关于教育领域的词汇一致性的工作都在量化对齐方式的措施和与代理对齐的相互作用的类型中都遭受了限制。在本文中,我们采用基于数据驱动的共享表达式概念(可能由多个单词组成)的对齐措施,并比较一对一的人类机器人(H-R)相互作用的对齐方式与协作人类人类的H-R部分中的对齐方式-Orobot(H-H-R)相互作用。我们发现,H-R设置中的学生与H-H-R设置相比,与可教的机器人保持一致,并且词汇一致性和融洽关系之间的关系比以前的理论和经验工作所预测的要复杂。
translated by 谷歌翻译
联合学习(FL)是以分散的方式共同训练机器学习算法的范式。 FL中的大多数研究都集中在基于神经网络的方法上,但是,由于克服算法的迭代和添加性特征的挑战,在联合学习中基于XGBoost的方法(例如XGBOOST)在联合学习中没有得到反应。基于决策树的模型,尤其是XGBoost,可以处理非IID数据,这对于联合学习框架中使用的算法很重要,因为数据的基本特征是分散的,并且具有本质上非IID的风险。在本文中,我们专注于研究通过对各种基于样本量的数据偏斜方案进行实验以及这些模型在各种非IID方案下的性能,通过非IID分布的影响如何受到非IID分布的影响。我们在多个不同的数据集中进行了一组广泛的实验,并进行了不同的数据偏斜分区。我们的实验结果表明,尽管有各种分区比率,但模型的性能保持一致,并且与以集中式方式训练的模型接近或同样良好。
translated by 谷歌翻译
黑盒优化在许多应用中具有潜力,例如在实验设计中的机器学习和优化中的超参数优化。 ISING机器对二进制优化问题很有用,因为变量可以由Ising机器的单个二进制变量表示。但是,使用ISING机器的常规方法无法处理具有非二进制值的黑框优化问题。为了克服这一限制,我们通过与三种不同的整数编码方法合作,通过使用ISING/退火计算机和分解计算机来提出一种用于整数变量的黑盒优化问题的方法。使用不同的编码方法,使用一个简单的问题来计算最稳定状态下的氢分子能量,以不同的编码方法进行数值评估。提出的方法可以使用任何整数编码方法来计算能量。但是,单次编码对于小尺寸的问题很有用。
translated by 谷歌翻译